

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

BUILD THE LAWN RANGER

Take it easy this summer with the world's first practical robotic lawn mower!

BUILD A UNIVERSAL GENERIC LINEAR POWER SUPPLY

A single PC board design
can be used to power
dozens of projects!
ADD A DISPLAY TO YOUR NEXT PROJECT
Step-by-step guide to using LCD display modules

EXPERIMENT WITH I/O INTERFACING
How to build an experimenter's card for the PC expansion bus

SINGLE-CHIP XTAL OSCILLATOR

Build a mini crystal-controlled frequency standard and pulse gencrator

\$2.50 U.S.
$\$ 2.95$ CAN

Meet the meter that brings an entire test bench to your job. The versallie Fluke 80 Series do-tust-abouteverything "Multi" Meler.
It offers everyiting you'd expect from an advarced handheld DHM, plus a lot you'd find only in dedicated instuments Pius Flue exclusive features you cart bury anywhere else. All built with the most advanced surtace mounl desing and sungie-chip ASIC technology for a thinne, tougher, more rellable package.

There's a fully annunciated display for clear operation Duty cycle function. High-speed anatiog indicator A protective halster with innowatve Flex-Stand "0 for easy adaplable operation Audible Input Alet ${ }^{*}$ to reatce the risk of darnage to the meter, the usge, and the und being tested Puss the strongest warranty in the business.
All good reasons to move up to the inulymulti Fluke 80 Series today Yu'll find 80 Series DMMAs at your Fluke distribulor. For immediate, off-the-shelf dolivery Calt

1-800-44-FLUKE, ext. 33 to the rame of your nearest distributor.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

June 1990

Vol. 61 No. 6

: IJIII THIS

31 THE LAWN RANGER
Sit back and watch this robotic lawnmower cut the grass for you. Raymond Rafaels

41 GENERIC LINEAR POWER SUPPLY BOARD Build one PC board to fit all your power-supply needs. John Wannamaker
 47 PROGRAMMABLE CRYSTAL-CONTROLLED PULSE GENERATOR

This single chip pulse generator uses a programmable crystal oscillator IC.
Peter A. Lovelock

TraHINOLOCY

51 ALL ABOUT SURROUND SOUND and for theaters.
 Josef Bernard
 ChiCulis your next project.
 Steven Avritch
 COMPUHTAB

A straightforward look at surround sound systems for homes

59 ADD A DISPLAY TO YOUR PROJECT
An easy and inexpensive alpha-numeric display could enhance

73 BUILD THIS EXPERIMENTER'S CARD
 Our experimenter's card for the PC expansion bus is easy to set up and use with simple BASIC programs.
 Mark Hanslip

1) Trpatinuinits

6 VIDEO NEWS

What's new in this fastchanging field.
David Lachenbruch
18 EQUIPMENT REPORTS
Huntron DC Line Sentry, and NCI Model PA480 PC-Based Logic Analyzer.

63 HARDWARE HACKER
Low-cost memory. Don Lancaster

69 DRAWING BOARD
Finally, a video signal!
Robert Grossblatt
72 AUDIO UPDATE
Receivers vs. separate
components.
Larry Klein
73 EDITOR'S WORKBENCH
68000 update, system analyzers, and more. Jeff Holtzman

PAGE 73

PAGE 51

ATID MORI:

94 Advertising and Sales Offices

94 Advertising Index
8 Ask R-E
95 Free Information Card
12 Letters
80 Market Center
22 New Products
69 PC Service
4 What's News

OS Mila 601 N：

If you can think of better things to do with your summer weekends than mowing your lawn－and who can＇t？－get busy building the Lawn Ranger right now．This battery－ powered robot is not remote con－ trolled．Its Infra－red sensors can ac． tually＂see＂the grass，and direct its two cutting motors to mow just where its needed．Meanwhile you can lounge in your hammock with a cool drink．Turn to page 31 to get started．

THE JULY ISSUE GOES ON SALE JUNE 5.

BUILD R－E＇S DIGITAL DASHBOARD
 Bring high－tech monitoring to any car．

THE LAWN RANGER：PART II
A look at the motor control board．
BUILD A SUPERDIRECTIONAL MICROPHONE
Our unusual design uses a horn instead of a parabolic reflector to concentrate sounds．

ROCK，RELIGION，AND RHETORIC
A look at U．S．－based shortwave stations．

SECURITY SYSTEM COOKBOOK

An array of security circuits for your home and car．

ComputerDigest

Build a solid－state disk drive．

[^0]Hugo Ciemnbech（1894－1087）tounde
M．Henvy Gernabech oditar－in chien，emeriturs

Larry Stechler，Ex，CRT －ditosin－chial and pedorater

EDITONIAL DEPA昔THENT
Brian C．Fention，＊ito
Mere Splwelw．asmocule editin
Donial Coodman．Exphencel editor
Tent Sceduto．aseatant edito
Jeflrey K．Holtzm compurear editep
Aobert Croasbiati．eireutis edito Lemy Kleln．aupio editor
Devid Lachonbruch cortributing edrior
Oon Lanceeter contributiong eino
Aichard D．Frech contributing editor
Kothy Cempbeil，editorial esestant

ART DEPATNEEN

Andre Duzame，ent durtector
Injoe Leen，illuntrator
Ru＊＊ell C．Trueteon，thumetrator
PROOUCTION DEPARTMENT
Ruby M．Ven，production director Janic＊Bof． ediforlal production
Karen 8，Tucher savertiling production
Mancill Amaromo production astivetan

CIRCULATION DEPANTH2゙オ
deceutire P．Chaneeters circulation diructor
Wendy Alamto carculation anatrat
Therasa Lombardo circulabon aesustan
Michele Torrillo，regrinl bookutora
Typogreqty by Mates Gemphics

Asedo－Elactronic 5 it indezed th Applied Science \＆fechnology inder and Readers Cuide io Pariodicel illor． ature
Microfilm 8 Microfiche aditiont an ovartable．Contact eirculation depart． ment for deterile

是dvertisin Selos Ontces lioted on peope 94.
Padio－Electronica Enecutive and Adrain：otrativ OFices 1．518－223－3000．
Subecriber Customer Senviee －1006－288－0652．
Order Entry for New Surbmertberts 1．800．009 7139
of Circuiterion

Clips For

Chips.
73 Time Saving Sohntions For Faster
IC Testing. Think of the time you'll save testing those fine-pitch ICs by having the right Pomona IC Clips, Pin Breakouts or Socket interfaces at your finger tips. You'll do the job quicker and more dependably than ever before. They're available now: Your choice of DIP styles, SOIC, PGA, PLCC, LCC, or even our newest ultra fine-pitch PQ:P (Plastic Quad Flat Packi) series, to make testing faster, more dependable.

Ponnona Charts Quality First. Ondy the finest quality materials are used: bertlium copper for best contau force, gold plating for lowest contact resistance, abrasive contact coating for best oxide penetration, glass-filled Nylon bodies for dimensional stability and rigidity, and stainkess stee hinges, pins and springs

And, to make your job even easier, Pomona also offers a greas complement of test accessories, like our SMD Dog. Leg Microtip Test Probe, SMD Test Tweezers, Grabler ${ }^{*}$ and Minipincer" Clips, jumpers, test leads and cable assemblies to makic your IC usting faster and less expensive.
 check-oun the chart and pick your dips. See your nearest Authorized Pomona Distribulor or contact PONONA ELECTRONICS, 1500 E. Ninth St, P.O. Box 27267, Pomona, CA 91769 (714) 623-3463 FAX (714) 629-3317

1990 POMONA CATALOG!
Recerve tod net, IJis-page adition FREE on mpuest Contains \mathcal{C} Test Cup Cbart and thothanels of mar solutions

[^1]
What's News

Radalert reaches Russia

As part of perestroika, and in light of the lingering problems created by fallout from Chernobyl, the Soviet government has decided to encourage the production and distribution of radiation detectors for Soviet citizens. The Radalert nuclear radiation monitor (featured in RadioElectronics' June and July 1988 and June 1989 issues) won a recent gov-ernment-sponsored design competition in the Soviet Union, surpassing 45 other contestants. That resulted in the signing of a Protocol of Intention for Joint Venture by a Soviet group and International Medcom (Sebastopol, CA), the manufacturers of the Radalert. Under the terms of the proposed venture, the Radalert and similar radiation detection instruments will be mass-produced in the Soviet Union under a licensing agreement with International Medcom.
A Radalert monitor was used to measure the radiation level at the Chernobyl plant in April 1989. Three years after the accident, a radiation level of 4067 CPM—about 250 times the normal background radiation level here at Radio-Electronics' of-fices-was recorded.

International Medcom has been

New solid-state laser puts out 1,000 watts

In a feat they compare to breaking the four-minute mile in running, scientists at General Electric Research and Development Labs in Schenectady, NY. have developed a solidstate laser that has achieved onethousand watts average output. The new laser is a neodymimum-doped ytrium-aluminum-garnet (Nd:YAG) face-pumped laser, which happens to be a direct descendant of a device patented by CE physicists 17 years ago, which put out only 10 watts of power.

According to loseph P. Chernoch,

tom cochran of the natural reSOURCES DEFENSE COUNCIL holds a Radalert montor on the grounds of the Chernobyl nuclear facility in the Sovlet Union. The radiation level displayed (4067 CPM) is approximately 250 times higher than normal, three years after the accident occurred there.
active in the United States as well. The company's RMS-2 monitor and detection system was displayed to the Energy Committee of the Massachusetts Legislature last spring, for possible use in monitoring emissions at the Pilgrim and Yankee Rowe nuclear plants in that state, That system, as well as the Radalert, also will be used by environmental groups to keep tabs on radioactivity levels that are near nuclear plants and test sites.
who invented the original device in 1972 and who led the team that demonstrated the new device, the facepumped laser is second to none for industrial cutting and drilling because of its combination of high power and good beam quality (a measure of how much the beam spreads out). In addition, it generates light of a one-micron wavelength that is particularly well absorbed by metals. The device can readily cut or drill through more than two inches of nickel-based superalloys, far beyond the reach of other known lasers.

GE's new laser compensates for
distortions introduced by other types by using a slab, rather than a rod, of lasing material and by using a highly effective cooling approach. The slab is a precision-machined Nd:YAG crystal that measures about $1 \times 1 / 6 \times 8$ inches. Light is pumped into the faces of the crystal (hence

GE R\&D CENTER ENGINEER ANGEL L. ORTIZ, Jif puts the face-pumped laser to work drilling holes in a y-inch thick plate of superalloy: in other tests itty managed to drill through more than two inches of superalloy. The solld-state laser's average power output of 1,000 watts from a single laser head opens the door to development of industrial laser systems that can cut and drill space-age metals and alloys with unprecedented speed and precision.
the name "face-pumped laser") by a pair of ultra-high-intensity flashlamps that are energized by the system's 17,000 -watt power supply. High bearn quality is maintained by directing the laser beam through the slab along a zigzag path the beam reflects internally off the slab's highly polished faces) that enables the beam to "see" a uniform averaged selection of stressed material, which eliminates the thermal distortion.

R-E

It'S no fluke.

Made in the U.S.A.

Feature	Fluke Model 77	Beckman Industrial RMS225
Digits	$3-1 / 2$ Digits	4 Digits
Resolution	3,200 Counts	$\mathbf{1 0 , 0 0 0}$ Counts
Accuracy	0.3%	0.25%
Automatic Reading Hold	Touch Hold	Probe Hold
Analog Bar Graph	31 Segments	41 Segments
Battery Life	2,000 Hrs	500 Hrs
10A Range	\checkmark (Fused)	\checkmark (Unfused)
Protective Holster	\checkmark	\checkmark
3 Year Warranty	\checkmark	\checkmark
True RMS		\checkmark
Auto Max Min		\checkmark
Relative Mode		\checkmark
Self-Resetting Fuse		\checkmark (40mA Input)
Price	$\$ 159^{*}$	$\$ 149$

"Touch Holds a regstered trademark of the John Fulke Mifg. Ca. Inc. " 1990 Fhuke and Phirips Catalog

Your best auto-ranging multimeter for other multimeters we ve built over the the money. It doesn't happen by accident. It takes expertise, painstaking R\&D, and a solid commitment to provide you with the fatures you've asked for at a prioe you can afford.
When you add it all up, the new Beckman Industrial RMS225 simply outperforms any meter in its class. And like all the
years, it's designed for long lasting and
 trouble-free use. Sa, go visit your local distributor today and check out the new RMS225 digital multimeter. Once you compare it to the others, the choioe will be obvious.

Beckman Industrial"

An Amilate of Emerson Eleciric Co.
Instrumentation Products Division
3883 Ruffin Road San Diego, CA 92123-1898
(619) 495-3200 • FAX (619) 268-0172 - TLX 249031

Outsite California I-800-854-2708 Within California 1-800-227-9781

Video News

DAVID LACELNBRUCH, CONIRIBUTING EDITOR

- 30,000,000 stereo TV's. At least 20,000,000 TV sets equipped for Multichannel Television Sound (MTS) stereo and second audio channel reception have now been sold, indicating that at least one Anerlcan home in every five can receive television programs in stereo. Last year was MT'S stereo's biggest year, when more than 6,000,000 stereo-equipped sets were sold, representing 27.8% of all color TV set sales. That is an increase of almost a million sets over the $5,100,000$ stereo sets sold in 1988 , which repressnted 25.2\% of that year's sales. In addition, about $1,800,000$ VCR's sold in 1989 wers able to recsive MTS stereo broadcasts, up from 1,400,000 in 1988.
- Welcome back, Majestic. Old-timers will soon see anothsr familiar old brand back in television stores. That is Majestic, which is being revived as a label sold to independent retailers through distributors. The revival of Majestic follows the similar reincarnation of the Crosley brand (Badio-Electronics, August, 1989). Like the new Crosley brand, the new Majestic is no relation to its narnesake. The new Majestic brand is being made for a distributor organization by another old TV name-Wells-Gardnar of Chicago, one of the oldest private-label TV
manufacturers-from chassis and subassembliee understood to be made by Zenith. The new Crosiey, as we reported earlier, is made by North American Phillps. Other ploneer brands which have been revived by new parents include Capehart, Dumont, Emerson, and Symphonic.
- Exit CD Video. Speaking of names, one that never caught on hes been dropped. Philips and its affiliated record label, PolyGram, have abandoned their effort to promote "CD Video" as the new name for the optical videodisc. They adopted the name back in 1986, when the laser videodisc's fortunes were at a low ebb, in hopes that the magic of the audio CD would rub off onto the videodisc. One added attraction of CD Video was a new 5 -inch version that contained up to 6 minutes of video and 20 minutes of digital audio. The 5 -incher never caught on, but combination CD and videodisc players brought a revival of the
videodisc, which is becoming increasingly popular. Now Philips and other manufacturers have agreed on a single name: "Laserdisc."
- 8ky Cable. Activity on the direct satellite broadcasting front indicates that a television revolution will soon be under way. Two groups have announced plans for new satellite ventures. U.S. Satellite Broadcasting signed an agreement with GE Astrospace to acquire a three-channel satellite to broadcast directly to home antennas, with Nationwlde Insurancs as a partner.

A second announcemsnt stirred up much more publicity. A consortum consisting of NBC, Cablevision Systems, and Rupert Murdoch's News Corporation said they will launch a high-powered direct satellite service in 1993 with up to 108 channels. Using three satellites in the same orbital slot as US. Satellite Broadcasting's bird, "Sky Cable" will provide as many as 128 channels. The Sky Cable consortum said the 200watt power of its transponders will make it possible for homes to use small flat antennas measuring about 12 inches square. Transmission from the earth to the satellite will be digital, but the satellite will send out analog video signais. It was estimated that receiving antennas plus recelvers for the satellite will cost $\$ 200$ to $\$ 300$.

It's called "\$ky Cable" because the sponsors hope to make it available through local cable operators for a monthly fee, but if consumers wish to purchase the equipment and pay the satellite broadcaster directly they may do so as well.

Both NBC and the News Corp. (Fox Broadcasting) insisted that none of their network programs would be broadcast on the satellite, and Cablevision sald the system would be a supplement to cable and not a replacement. But it was diffecult to see what function terrestrial broadcasting or cable would serve when 128 channels could be picked up from satellites with a small invertment on the part of the public, and there was some feeling that investments in the billion-dollar project by its network and cable sponsors was a defensive maneuver-just on the chance that direct satellite broadcasting might make broadcasting and cable obsolete.

No matter where you go, Tek's new 222 is a perfect fit.

Introducing Tek's new 222 Digital Oscilloscope. Weighing In at under 4.5 pounds, the new Tek 222 is an ulltra-portable, 10-MHz digital storage scope that's perfect tor service applicalions. So lough, rugged, and totally sell-contained, it can go just about anywhere. And its incredibly easy to use-even in extreme conditions.

Extraordinary capability and reliability at a great price. The $2 २ 2$ is a dual-channel scope that can measure a wide variety of electronic instrumentation and circuitry It has rechargeable onboard batteries with a floating ground to 400 volls, and meets lough environmental standards.

Plus, the २22 lets you pre-define front-panel setups, and calt them up with a single button in the field. You can also save wavetorms in the scopes mernory, then transter them to a PC for analysis and hard-copy output when you get back to the shop.

Best ol all, the 222 is yours for only $\$ 2350$. And that includes Tek's remarkable three-year warranty on parts, labor, and CRT.

Get one to go! Pack a handiut of power with you wherever you go. To order your 222 , or lor a free brochure, conlact your local Tek representalive or authorized distributor.

In a hurry? Call
$1-800-426-2200$

Ask R-E

WRITE 1O:

ASK R-E
Radio-Electronics
500-B Bi-County Blivd.
Farmingdale, NY 11735

LINES OF RESOLUTION

Please tell me something about the horizontal resolution of the NTSC system. According to the standard, there are 525 horizontal lines per frame, but my VCR only puts out 230 lines. Is that lines per field or lines per frame? Sony ED Beta machines claim to have more than 500 lines and some studio cameras are rated at above 600 linesmore than the NTSC standard. How can a TV display more than 525 lines? And could you explain what difference there is between a "composite video output" and a "video out-put?"-M. Hart, Burbank, CA

I can understand your confusion but you shouldn't feel too bad because the whole issue of video resolution is confusing. Even some friends of mine who use the video business to pay the rent don't have a clear understanding of exactly what the numbers mean. Let's start with a bit of history.

The whole idea of using numbers of lines to measure resolution had its beginnings in the lens business. As lens making progressed from broken bottle bottoms to fluoride coating and lasers, a standard was developed to measure the amount of detail a lens could transmit. As you've probably guessed, the unit that was chosen was the number of lines per millimeter.

A "line of resolution" is defined as an equal amount of white and black area as shown in Fig. 1. A typical resolution chart would have a series of lines that get thinner and more closely packed as you move across the chart. In practice, the lens would be pointed at the chart and the projected image would be examined to see at what point it became impossible to see individual lines. That point would be designated as the resolving power of the lens.

FIG. 1

It should be obvious to you that there's a problem with this method since lenses don't have equal resolving power at every point on the glass. That is due, in part, to theoretical consequences of the optical paths of the light, and also with practical considerations of grinding glass; a lens is usually much sharper at the center than it is at the edges. That's why the published resolution of a lens is specified for a particular point on the lens-usually the center where the image is the sharpest.

The lines-of-resolution method of measuring the sharpness of a lens was carried over to most of the industries that were involved in the business of reproducing images. That includes printing, film, and video. Each industry is concerned with the amount of detail that they can reproduce, but they also have characteristics that differ from the lens business. So, while they all refer to lines when they talk about resolution, they aren't all talking about the same thing. In short, the video industry has made too much use of the word "line."

You're correct in saying that the NTSC standard calls for 525 lines per frame, but you didn't go far enough. Standard NTSC video doesn't just call for $\mathbf{5 2 5}$ lines per frame, it's that way by definition. Each field contains 262.5 lines, and two fields make one frame of video. A video signal that puts out anything other than that just isn't conforming to the NTSC standard. The signal timing may be such that you can display it on an NTSC-standard monitor, but that means that it's really only "NTSC compatible."

Now, with that out of the way, exactly what does it mean to say that some video device puts out 200, 300,500 , or 600 lines? What it means is that there are two different kinds of lines: the first is a line of video and the second is a line of resolution. And what, you may well ask, do they have to do with each other? Absolutely nothing!

The way to understand how the lines of resolution in video relate to the lines of resolution used in optics is to realize that video resolution deals with the number of dots on
each individual horizontal line of video. Your VCR can put out 230 lines of resolution, but what that really means is that it can display up to 230 individual dots on each line. Imagine that, using a video camera and a resolution chart similar to the one in Fig. 1, you made a tape showing a few seconds of 200 vertical lines, then 207, 202, 203, etc., on up to and past 230 . When shown on a TV, the image would look like vertical lines, but it would really be a series of dots. As soon as the number of lines passed 230 , the image from your VCR would become a gray blur rather than a series of individual lines.

To get electronic about things, the resolution of a video device is a direct function of the bandwidththe more quickly it can turn dots on and off, the higher the bandwidth and the better the resolution on each line. As a rule of thumb, you can say that there about are eighty lines of resolution per megahertz of bandwidth. Sony's ED Beta VCR claims to have more than 500 lines of resolution (we know that really means 500 individually distinguishable dots per horizontal line) at about 9.3 MHz ...and that brings out another point worth mentioning.

Our 80 -line-per-megahertz rule doesn't seem to work with the Sony because we haven't talked about all the other parts of the signal. A portion of the bandwidth has to be used for the various subcarriers, IF, color, and so on. And don't forget that not all of the horizontal line of video is used for picture-more than 16% of each line is reserved for the horizontal interval where you'll find such goodies as burst and horizontal sync. Another factor to consider is the capability of the recording media. Metal tape can handle a higher bandwidth (which is another way of saying it has a higher frequency response), but even the best tape in the world just can't handle the maximum resolution deliverable by the ED Beta machine.

As far as what the difference is between the "video" and "composite video" outputs, I think we're dealing with a lack of standard. Composite video is a single signal containing both picture information and sync, while a plain video signal may just contain only the picture information.

Descrambler Article Parts

We stock the exact parts, PC Board and AC Adaplor for two articles published in Radio-Electronics magazine on building your own CABLE TV DESCRAMBLER

February 1984 issue
\#701 Parts
Inclutes aii originial porits.
\#702 PC Board. \qquad 7.95

Original 3x4 etched. drilled ond silk-screened pc board.
\#704 AC Adaptor.
7.95

Original 18 volt DC 200 mn .
ㅍ701, 702 \& 704....... 29.00

February 1987 issue ¥301 Parts.................. 29.00 includes all originol paris. \#302 PC Board............ 7.95 Original 5xi etched. drilled ann silk-screened pc boord. \#304 AC Adaptor....... 7.95 Original 18 volt oc $\mathbf{2 0 0 m a}$ \#301, 302 \& 304........ 39.00 Free article reprint with purchase.
Snooper Stopper....... 39.00 Macrovision Kit............ 29.00 Cable TV deserembibre can be detected, protect your privacy with the Snoaper Stopper Free orticle on Coble Snooping.

Mocrovisian. now you see it, now you dan't with our macroscrubber kit. Article wos Published in Radio Elecironics 1987 is8ue.

CALL TOLL FREE 1-800-332-3557 Out side USA 1-508-699-6935 Visa, Master Card and C.D.D. Add $\$ 3.50 \mathrm{~S} \& \mathrm{H} .36 .00$ outside USA.
D \& D Electronics, Inc., PO Box 3310, N. Attleboro, Ma. 02761 CIRCLE 197 ON FREE INFORMATION CARD

LETTERS

SAP ZAPPED

In his February "Video News" piece on multichannel sound, David Lachenbruch forgot one important thing: The average consumer cannot operate a stereo TV set.

WRC-TV channel 4 (Washington, DC) rebroadcast NOAA weather audio on their SAP channel as a public service. After two days the SAP channel was turned off. The switchboard had been inundated with
calls and the FCC reported that they had several hundred calls complaining of interference on channel 4.
The station then ran an endless tape loop explaining that the SAP channel was selected and the viewer should consult his owner's manual for instructions on how to return to program audio. Again the phone calls poured in. Some viewers even insisted that the station send someone to "fix" their TV sets.
Finally, after three or four weeks, the calls began to taper off. At that point, the station began to broadcast NOAA audio again. The phone calls returned, in increasing numbers each day. After a week, the SAP channel was turned off for good.
I suspect that the SAP channel will never be used for anything other than regular-programming audio.
ROBERT FUTSCHER
Alexandria, VA

THE CORRECT WAVEFORM

I am writing to congratulate you on an excellent article, "Glitches in the Power Line" (Radio-Electronics, April 1990). In all the magazines and books I have ever read, only Radio Engineering by Terman showed correct waveforms for rectifiers and filters. Now Radio-Electronics has become number two, with Fig. 2 in the article. Usually the waveform of part (a) is shown while the filter and load are intact, but in truth that waveform is correct only with no filter and no load or with purely resistive load only, as the article correctly pointed out. The shapes and phasing of parts (b) and (c) are about as nearly correct as the drawing scale would permit. I have pointed out errors shown in respected handbooks to editors who refuse to correct their figures.

The rest of the article is very inter-
esting, and it was obviously written by someone who knows the facts. KENNETH E. STONE Cherryvale, KS

COMPARING CD PLAYERS

I must take issue with Dwayne Rosenburgh's letter in the March issue regarding Larry Klein's December "Audio Update" column, which dealt with sonic differences between CD players. Rosenburgh believes that the $A B X$ tests to which Klein refers prove only that there are no significant differences between expensive CD players and that a " $\$ 1500$ unit will always sound better than a $\$ 300$ model." Rosenburgh is overlooking the fact (mentioned in the column) that two sets of $A B X$ tests were conducted. The second dealt with costly players, but the first set dealt with machines ranging in price from a $\$ 450$ Emerson (frequently discounted to $\$ 200$) to a $\$ 1400$ Meridian. On both occasions the ability of listeners to differentiate between any two CD players to a statistically significant degree, 75\% of the time, with music as opposed to test signais, was rare. As a case in point, listeners could distinguish between the Emerson and a $\$ 13000$ reference Sony 26 out of 40 times with orchestral music and 21 out of 40 times with jazz. The same listeners could distinguish the Sony from the Meridan 21 out of 40 times with orchestral music and 20 out of 40 times with jazz. The averages were thus 51% and 59% for the Meridian and the Emerson, respectively. A 50% average could be achieved by pure chance. The only conclusion we can reach from those tests is that there are subtle sonic differences between CD players, but the differences between cheap and expensive players are no great-

DELUXE TEST LEAD KIT
Users cal3 TPI tesileads The Absolute Best．The TLS2000 features the highest quality cable in the industry－with spring－losded sufery－skeeved plugs．U－L．Ilsied（File E79581）．Kit：\＄29．Leads \＆probes only：519．Satisfachon guaranteed． TEST PROBES INC．Call ioll－free for calalog： 1－800－368－5719．
CIRCLE 208 ON FREE INFORMATION CARD

BNC ATTENUATOR KIT

Contains 4 antenualors－ $3 \mathrm{~dB}, 6 \mathrm{~dB}$ ． 10 dB ． 20 dB ； 1 feedthrough and 1 termination．Thick－ film circuitry for low reactances．Rugged de－ sign resists shock and lasss longer．Rectangular shape stays put on the bench．Impedance： 50Ω Frequency：IGHz．Maximum Power：IkW peak，IW avg．VSWR 1．2：1．Allenuator Accuracy： $\mathbf{1 0} \mathbf{2} 2 \mathrm{~dB}$ ．Terminations Resislance Tolerance：さ1\％．\＄150．
TEST PRORES INC．Call toll－free for catalog： 1－800－368－5719．
CIRCLE 209 ON PREE INFORMATION CAAD

ECONOMICAL SILICON RUBBER TEST LEADS

Best value in moxderately priced leads．High quality．sof．silicon rubber cable．Ґ马anana plug on measuring ifp accepes push－on accessories． Plugs have spring foraded safery sleeves．Model TL． 1000 \＄14．Sarisfaction guaranteed． TEST PROIES INC．Call toll－free for catalog： 1－800－368－5719．

COAX ADAPTER KIT

－Creale any adapter in seconds
－Make all combinations of BNC．TNC，SMA． N，UHF，Min－UFF．F and RCA
The TPI 3000A sit contains male and female comections of all 8 rypes，and 6 univenal inter－ faces．Simply screw eny combination of 24 con－ nectors to one of the interfaces to create the desired adapter．\＄150．
TEST PROHES INC．9178 Brown Deer，San Diego，Califorma 92121，Call toll－free for cata－ log：1－800－368－5719．

CIRCLE 207 ON FREE INFORMATION CARD

No Better Probe Ever at This Price！

Shown here
Model SP150
Switchable 1x：10x $\$ 49$

CIRCLE 185 ON FREE INFOAMATION CARD

Risetime less than 1.5 nsec．

－Unisersal－works with all oscilloscopes
－Remosable Ground I．ead
－Excludes Exiernal Interference－even on scope＇s most sensitive range
－Rugged＊withstands harsh environments including high temperalure and humidity
－Advanced Strain Relief－ cables last longer
－Available in 10x， 1 x and switchable 1x－10x
－ 10 day return policy performance and satisfaction guaramieed

TEST PROBES，INC．

9178 Brown Deer Road
San Diego．CA 92121
Toll Free $1.800-368-5719$ $1 \cdot 800 \cdot 6+3-8382$ in CA

Call for free calatog and IDistributor in your area

SERVICING RF PRODUCTS

Signals picked up by the low capacity input of the Spectrum Probe allow rapid evaluation of problems. Simply placing the probe near a component allows judgment of whether it is active. RF lallures are easily established.

A cordless phone (base station) is probed near Its 38.970 crystal in fig. 4. Both 39 MHz and its second harmonic are obvious The lowest line at 10.245 is also obvious and can be estab--lished by probing the adjacent 10.2 crysial. which then shows 10 MHz as higher level than 38 MHz . We have established recelver RF oscillator/system operation in seconds with no connection, Information, schematic. etc.I

frequency $\quad 100 \mathrm{MHz}$
When the transmitter is activated (by pressing CALL), probing near the 15537 crystal provides fig 5. Fundamental operation and many harmonics are shown. As the probe is placed near the following stages, the fundamental is decreased, and the third accentuated until the relatively clean output of fig. 6 is obtained near the antenna lead. The transmitter RF is visible in seconosl

107 SPECTRUM PROBE

converts any scope into a 100 MHz spectrum analyzer

$\$ 199$ drad

Smith Design 1324 Harris Rd. Dresher, PA 19025 (215) 643-6340 CIRCLE 192 ON FREE INFORMAMON CARD
er than the differences between any two expensive players. On the second testing, listeners expressed a subjective preference for a $\$ 750 \mathrm{De}$ non over a $\$ 2500$ Tandberg.
TOM GORDON Berkeley, CA

TAPE-DECK SPEED

As a long-time audio hobbyist, I've followed Larry Klein's articles for many years. I particularty agree wilh his contention that there is no discernible audio difference in the sound quality from CD players over a wide range of retail prices. I work with people who contend that my hearing must be hopelessly messed up because I hold that view! They claim that the differences are easily heard, as are the differences between (even new) pre- and poweramplifiers. None of them, however, can agree on precisely what constitutes "the best" or "the most accurate" sound. All they know, they say, is that different pieces of equipment sound "different."

1 strongly disagree. I can readily hear pronounced differences be-

Get A Complete Course In ELECTRONIC ENGINEERING

8 volumes, over 2000 pages. Including all necessary math and physics. 29 examinations to hetp you gouge your personal progress. A truly great learning experience

Prepare now to take advantage of the growing demand for people able to work at the engineering ievel.

Ask for our brochure giving complete details of content. Use your tree information card number, or wite us directly. S99.95, Postage included. Sotisfoction guoranteed or money retunded

CIRCLE 57 ON FREE INFORMATION CARD
tween different brands and models of phono cartridges and loudspeakers, but I find that those whose specifications show their responses to be flatter, with low harmonic and phase distortion over the widest frequency range, sound the most natural. Few, if any, of the midto high-priced models produce unpleasant sound reproduction.

The real problem, I believe, is that no sound recording and production system I have ever heard can come close to making me think that there is a live acoustic instrument, voice, or scene being listened to. I can walk into a crowded disco and know instantly if the band is live or recorded. Loud acoustic instruments are absolutely unmistakable even in a high-nose environment. Recorded sound is no more real than a photograph. I know only what the original probably sounded like, just as I can appreciate a picture as a reasonable representation of the original scene. No more, no less.

I fully support the ongoing efforts of all audio researchers in their quest for "real sound." Great strides have been made, and the equipment that is widely available today represents superb value and high reliability. For the same money I spent on a receiver 15 years ago, I can buy one today whose performance and reliability are tremendously improved.

I'd like to suggest a simple method to determine whether a tape deck is running at the wrong speed, or if its speed is varying over the long or short term. I have noticed that few, if any, low- or mediumpriced cassette decks include tapespeed accuracy in their specs. Since tape speed determines absolute playback pitch, accuracy is very important. I've recorded a $440-\mathrm{Hz}$ tone on normal tape, using the most expensive cassette deck I could find. I play back the tape on the cassette player to be tested, and check the frequency with a guitar tuner-a relatively cheap device that can be found at any musical instrument store. The indicator (LED or meter needle) quickly shows if the playback machine is running at the same speed as the machine on which my tape was recorded, and if there is any noticeable speed variation on playback. A speed difference or variation of $\pm 0.25 \%(1 \mathrm{~Hz})$ is readily

Discover Your Career Potential In High-Tech Electronics...Call 1-800-366-8989!

CIE Gives You The Training You Need to Succeed.. At Your Own Pace...\& In Your Own Home!

II you're arxious to get ahead ... and build a real career...you owe it to yoursell to find out about the Cleveland Institute of Electronics!

CIE can help you discover your career potential in the fast growing fietd of hiohtech electronics A caveer that will challenge and excite you every day... foward you with a powerlul feeling of personal accornplishment. and deliver a level of financial security you may have only dreamed of before!

As the leading school in home-study electronics. CIE has helped over 150,600 students in the U.S.A. and over 70 foreign countries get started in this exciting field. To find out how CIE could be helping you. read on...then send for a CIE catalog TDDAY!

A Growing Need For

Trained Professionals!

The career opoortunities shown here are only a kew of the challenging, highpaying careers you could enjoy as an electronics tectrician

You could be the "brains" behund the scenes of an wating TV broadcast. trouble-shoot life-saving medical equipment..deson exotic new aeronautics systems. CJEs job-oriented programs offer you the quickest possible path to the career of your drearns! And CIE also features military and union re-training, to buitd on what you already know.

Dozens of Fascinating Careers To Choose From!

Even if you arent sure which career is best for you, CIE can get you statted with core lessons applicable to all areas of electronics. As you advance. CIE makes job opportuntifies availabie to you through the bimonthly school paper. the Electron.

Practical Training... At Your Own Pace.

Through CIE. you can train for your new casear while you keep your present job. Each course allows a generas complifion tone. and there are no limitations on how last you can study. Shout you aheady have some electronics experience. CIE offers several courses which start at the intermediase level

"State-01-The-Art"

 Facilities \& Equipment.In 1969. CIE proneered the first eloctronics labocatory course, and in 1984. the first Microprocessor Laboratory. Today, no other home study school can match CIEs state-ot-the-art equipment. And all your laboratory equipment is included in your tuition cost. There is no extra charpe-it's yours to use whtile you stuty at horme and on the job after you complete your course!

Earn Your Degree To Become A Professional In Electronics!

Every CIE course you take eams you credit towards the completion of your Associate in Applied Science Degree. so you can work towards your degree in

Personal Training From A Renowned Faculty.

Unlike the impersonal approach of large classroom study. CIE oflers you one-on one instructional help 6 days a weok, toll-free. Each CIE lesson is authored by an independent specialist, backed by CIE instuctors who work directly with you to answer your questions and provide technical assistance when you need it. you can work towands your degree in stages And CIE is the only schoot that awards you for fast study, which can save you thousands of dollars in obtaining the same efectronics education found in lov-year Bachelors Degree programs! Call or write for details today ${ }^{\text {t }}$

Call TOLL-FREE 1-800-366-8989

CIE WOrld Headquarters

Cleveland Institute of Electronics, Inc.
1776 East 17th St. Cleveland. Otio 44114

- YES! Please send me your independent study catalog (For your conveniance. CIE will have a representative corlacl you-there is no obligation.)
Pint Name
Athess. A여
CinyIStrielip
Age \qquad
Chack boor for G.I Bill bulletin on educational benefits a Veteran a Actrve Duty
Mail This Coupon Today!

FRIENDLY VIDEOS
'The Pionecr In AT Clone Vidcos'

COMPUTER HOW-TO VIDEOS

"Video Tape Is A Great Tcacher"

TOW TO BULO YOUन OWN IBM 288/388 AT CLONE COWH ITER Easy to do in a couple of evenings Ofmont enting a actiondiver. A real money-ater 60 MMNIES VWS \$30.85
"SHUEE RUNOS WTHY YOUM PC/ XT/AT CCMPYTERT, A complete now-user's hardware and sotmure bewning guide. Everyining from powtring up. 10 the direction strueture 60 MINUTES Mis 12999

THOW TO UPGAADE YOUR PC OR XT CONPUTEA TO AN AT FOR LIN. OER 82000°. All hore owerng man ondy a scrowdive. Complele ritep-by- tepep gide, aryone can do ul 30 MIMNTES VHS $\$ 24.95$

THP LASERJET SETAES I PRIMERT. The moen complele wideo avaliable on lager printing, foaturing the lemofjet II printer, desktop publishing, tonts, hatcowate and rot wawe acces. eorian. 0 MINUTES VhS sal. 89

FREE OFFER!

SAVE $\$ 40$ NOW by ordering the complele sen of all four tinten ©f the Ndiculounty LOW PFice, of $\$ 100$, and meeant. absoculely FREE. 'Aher Hours' - a soltwate proglam to thm your PC into an unationded Amstage Conter
seen. Speed adjustments are made as easily as tuning a guitar string (provided the user knows which pot to turn) just by watching the meter and setting it to 0 , or 440 Hz .

Is this a recognized method of assessing cassette-tape speed? If so, do you know where I can obtain a pre-recorded tape with the $440-\mathrm{Hz}$ tone at exactly the correct speed? GEOFF SALE
Bumaby, B.C., Canada
Thanks for your comments and kind words. I agree wholeheartedly with most of your comments. Your technique seems reasonable to me, although / can't be sure without trying if (which I'm not set up to do at this fime). For very high quality reference tapes of all types, request a catalog from Magnetic Reference Laboratories, 229 Polaris Avenue, Suite 4, Mountain View, CA 94043 (415-965-8187). Larry Kleln, Audio Editor

THERMOELECTRIC ENTHUSIAST I am one of those "arcane" engi-

No cosily School. No commuting to class. The Original Home-Study course prepares you for the "FCC Commerclal Radiotelephone License". This valuable license is your "ticket" to thousands of exciting Jubsin Communications, Radio-TV. Microwave. Computers. Radar. Avionies and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy. last and low cost!GUARANTEED PASS - You get yout FCC License or money refunded. Send tor FREE fac ts now. MAIL COUPON TODAY!

- FCC LICENSE TRAINING. Depl. 90 I P.O. Bor 2824, San Francisco. CA 94126 - Please rush FREE delails immediately?

I MAME
I mopAESS
CITV, STATE \quad ZTP $=-=-=0=0$
neers who thinks that thermoelectric modules are one of the greatest things to hit the planet in a long time (Hardware Hacker, RadioElectronics, January 1990), along with the U.S. space program, the French railways, and the U.S. submarine fleet. For one thing, the hot side of the thermoelectric module can always be kept at an ambient temperature by water cooling its heat sink. (My unit runs at $5^{\circ} \mathrm{F}$ above ambient with an extremely small "hot" sink and air cooling.) My unit was put into service in 1976 and has an excellent refrigeration record. Also, eliminating compressors, freon, plumbing ammonia, CO_{2}, and ozone destruction more than compensates for any supposed limitations. And finally, yes, my unit does make ice, at about the same rate and time as my freon refrigerator.

J. LINDNER

San lose, CA

PCjr DOCUMENTATION

I was pleased to read in Shawn Bobbit's letter (Letters, Radio-Elec(ronics, February 1990) that he recently purchased an IBM PCjr, and was sorry to learn of his difficulty in obtaining technical information regarding the PCir. In fact, technical literature is available for all of IBM's Personal Computers, including the PCjr. The "Hardware Technical Reference Manual for the PCir" is listed in the current directory of technical literature for IBM's PC's. A call to the toll-free number (800-IBM-PCTB) confirmed that the manual is currently available.

I hope this information comes in handy for Mr. Bobbitt and other Ra-dio-Electronics readers.
JOHN R. SOMMA

IBM Corporation

White Plains, NY

LEFT-RIGHT IMBALANCE

In regard to Lamy Klein's discussion on L-R speaker imbalance, I have found that the problem is often due to the values of the capacitors in the crossover networks; they shift over time. Also, all connections from the amplifier output to the speaker itself must be good. A poor connection anywhere in the line will cause a considerable loss of power to that speaker.
JOHN S. COX
Vancouver, BC

Now you can take those hot, new logic or block design diagrams, and quickly, easily bring them up to reality...in minutes... without soldert
Build circuits as fast as you can think. Test. Modity. Expand. Without burned-out parts or bumt fingers. Save time, money... and prove that you know that you're taiking about.. belore you use your CAD.
Specity PROTO BOARD Brand, Today's recognized Standard for Quality in breadboarding. Here are five expandable breadboards, oftering countless arrays of sotderless sockets and bus strips that emulate pc board layouts. Pop in components. Pop them out again. Microprocessors. Memory. Large DIPs Tiny discretes. Makes no difference. The patented aluminum backplane lets you work at

Irequencies from DC to half-a-GigaHertz or 500 MHz .
Need power? A powered PROTO BOARD Brand offers up to triple vollage power supplies, $+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$, with regulated/current limited DC power. Over 2,250 tie points with 24 IC capacity and 14 pin DIPs. Super for TTL, CMOS, Op-Amps and microprocessor circuits. And lots more.
Best of all, your hassle-free American-made PROTO BOARD Brand comes with an unlimited lifetime guarantee on all the breadboard sockets. Prices are so modest, you'll wonder why you waited this long to specify PROTO BOARD Brand. Order today.
 SPECIALTIES

Gobal Specialies. An Interplex Electronics Company. 70 Fulton Terrace. New Haven. CT 06512.
Telephone: (203) 624-3103. \& Interplex Electronics 1989. All Global Speciakies breadboarding products made in USA.

EQUIPMENT REPORTS

PA480 PC－based logic analyzer from NCI （ 6438 University Drive，Hunt－ sville，Alabama 35806）．

The PA480 consists of a main log－ ic－analyzer card，an interface cable， and an acquisition pod．The main

FIG． 1
card plugs into a free slot of a PC．A DIP switch allows the user to change the address at which the card resides to avoid conflicts with other boards ihal may be installed in the computer．After the board is in－ stalled，a 60 －conductor flat ribbon interface－cable is attached to it at the computer＇s rear panel．The other end is atlached to the pod．

Using the analyzer

Once the simple mechanical in－ stallation is complete，the computer is powered up，the pod is connected to the circuit of interest，and the operating software is run．While the soffware is dependent on the par－ ticular pod being used，a represen－ tative example of the main or command menu is shown in Fig． 1.

The best way to explain the opera－ tion of the analyzer is to look at each of the main menu commands，al－ though not necessarily in the order they＇re presented．The first one we＇ll look at is the co command， which initiales the acquisition of data and the generation of a new trace，the pictorial display of data．

ONE OF THE OFTEN－IGNORED RESULTS of the＂computer revolulion＂is that PC－based instrumentation is rapidly taking over many phases of product development．Today，an engineer working at his PC can design，de－ bug，and lest a new product．A good example of how it＇s happening is the

Radio Shack Parts Place

YOUR ONE-STOP STORE FOR BIG ELECTRONIC VALUES

Build with the Best-Over 1000 Components in Stock!

Parts "Hotline" Service! Thousands of Items Available

Your Radia Shack store manager can special-order a huge variety of parts and accessories dlrect from ouf electronics warehouseRealistic" Long-Life lubes, linear and digital ICs, microprocessors. suppori chips, phono cartridges and styli, crystais. specialpurpose batteries, diodes, selected modules lor TVs and audio equipment. autosound wiring harnesses. accessories, even SAMS Photofacts*. No handling charge, no shipping charge-jusi speedy delivery to the Radio Shack near you!

Amateur Radio License Guides

495 เ 1995

Home Study Courses For FCC License Tests

Novice Voice Ciase License Prep Course. With cassetles. $162-2402$
Technician Ciass Manual \$62-2403 General Cient FCC License Course. W62-2404 19.95

Brushless Fan IR Detector IC Tool Set Motor and Chime

Tiny, lough and efticient! Raled 150 mA. $1 \% 15 \times 1 \% 16 x^{+3}, e^{\#}$! $273-244$
on SVDC. board mountable s/ex $1 / 2 \times$ * $1 / 32^{\prime \prime}$. With dala. $276 \cdot 137$

Simplifles IR Design

Install and remove 6-pin to 40.pin DiPs without damage. Works whit LSI, MSI, and DIP devices Both toots are groundable 276-1581

(1)

(1) 1.5-3V DC Motor. For robolics. Propects. $1^{1 / 2} \times 1418^{\circ}$ di且, $273-223$ (2) Ooorbell Chime, ICimini-speaker combo. 6-18VDC. 5" leads. 1273-07

Diode Rectifiers Speaker Stuff

Dress It Up

Halogen Lamps

3-Amp "Barrel" Type Dlodes 200-Amp Surg*				(1) (2) (3)
Trpe	Pealk Inverse Vortape	$\begin{gathered} \mathrm{Can} \\ \mathrm{NO}_{0} \end{gathered}$	$\begin{aligned} & \text { Pixy } \\ & \text { of } 2 \end{aligned}$	gauge 278-1268 . . . Per Foot 99e (2) Gold Terminals for MEGA-
	50 200 400	$\begin{aligned} & 276 \cdot 9141 \\ & 276.113 \\ & 276-114 \end{aligned}$	$\begin{array}{r} 99 \\ 198 \\ 129 \end{array}$	CABLE. M64-401 ... Sel of 8/4.99 (3) Terminal Knobs. Screw-down

(1)

(1) Classy Two-Piece Enclosure Accepts PC poard and 9V bathery $5 \% \times 2^{11 / 4 \times 11 / 46 " . ~} 1270-257$.. 4.98 (2) Project Labels. Four $7^{7 / 6} \times 3^{\circ}$ sheets of rub-on letters and symbols (1270-201
S*1 2.98

(1) HPR50. For 4-cell fiashlights and 6-volt lanlerns. W272-1189
(2) HPR52. For 2 -cell flashights and 3-volh lanterns ${ }^{272-1190}$

Gold-Plated Plugs and Jacks

Wire Connectors \& Accessories

(1) \quad (2)

rim
(5)
(4)
*는 (6
(3) 2-Row Strip. ${ }^{1274-670 . . . ~} 1.9$

5	Pos	Trpe	dmps	Cat Ho	Exan
1	2	May	20	274.151	99
,	6	Maje	is	274.152	1 198
.	12	Male	12	274.153	199
*	2	Famate	20	274.154	98
2	6	Female	15	274.155	168
	12	Fempie	12	274.196	199

Engineering Calculator

3995

Uses Sillndard

 Elecironic SymbolsEC. 4035 makes design math a snapl Has 110 funcfions, memory. With case and balleries. 65-983

30-Range Multimeter

7995

Tests Capacitors and Transistors
A greal valuel Measures to 1000 VDC and 750 VAC . With $0.5^{* \prime}$ digital display. Eattery extra. 22.194

[^2]

Eleciromechanical - Counte to 99,999 One count per I2VDC pulse, pushbution resel. Mounts in $111 / 10 \times 1^{\circ}$ hole Deplh: 113/18* Whth igads and data. 277.222

Add prestige and earning power to your technical career by earning your Associate or Bachelor degree through directed home study.
Grantham College of Engineering awards accredited degrees in

electronics and computers.

An imporant part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways - to learn more and to earn your degree in the process.
Grantham offers two degree pro-grams-one with major emphasis in electronics, the other with major emphasis in computers. Associate and bachelor degrees are awarded in each program, and both programs are available completely by correspondence.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Write for our free catalog (see address below), or phone us at toll-free 1-800-955-2527 (for catalog requests only) and ask for our "degree catalog."

Accredited by
 Ihe Accrediting Commission of the National llome Study Couucil

GRANTHAM College of Engineering 10570 Humbolt Street Los Alamitos, CA 90720

Huntron DC Line Seniry Voltage Monitor

Keep tabs on low-voltage DC power supplies.

CISCLE 11 ON FREE INFORMATIDN CAGD

ONE OF THE MOST DIFFICULT PROBLEMS for the technician to diagnose is the intermittent one. Often, the most effective way to catch the problem is sheer luck. In the absence of luck, expensive test equipment-such as storage scopes or chart recordersmust be called into action.

While intermittent problems can appear anywhere in a circuit, their causes can often be tracked back to the power-supply section. That's the idea behind the DC Line Sentry from Huntron Instruments, Inc. (15720 Mill Creek Blvd., Mill Creek, WA 98012). The DC Line Sentry lets you keep tabs on a power supply without calling out the "heavy artillery." It's an easy-to-use voltage monitor that can detect and "remember" whether a power supply stays within specified limits during the time it is monitored. If the power supply passes the test, yet an intermittent problem occurs, then you know to look elsewhere for the source of the trouble.

The DC Line Sentry is housed in a gray plastic case that measures
roughly $41 / 2 \times 31 / 4 \times 11 / 2$ inches and weighs about $1 / 2$ pound. It's powered by a 9 -volt alkaline battery. The front panel contains two input banana jacks, four slide switches, and 6 LED indicators.

To use the unit, the supplied test leads are inserted in the input jacks, and are hooked to the supply under test. A pair of switches is used to select one of the four test voltages: $+5,+12,+15$, and +24 volts. A third switch is used to select either a 5% or 10% tolerance range, and the fourth switch powers up the tester.

When the tester is turned on, the green \mathbb{N} rance LED should flash to indicate that everything's OK, and the DC Line Sentry is monitoring the voltage. If however, you acci--dentaliy hooked up the test leads backward, the red negative LED would flash. You would then have to switch the leads and reset the tester with the power switch by turning it off and on.
The DC Line Sentry can detect any out-of-range condition with a duration greater than 50 milliseconds. If the supply voltage goes above the set limit, the above LED will flash. If the voltage then returns to its correct value, both the in range and above indicators will flash. As you might expect, an un-der-voltage condition will start a betow LED flashing, and a power failure will flash the power failed indicator.

A sixth LED is used to indicate battery condition. When the battery gets weak, the Low batrery LED flashes. The indicator remains on steadily when the battery must be replaced. The estimated lifetime for a 9 -volt alkaline battery is 2000 hours. That should be long enough to catch all but the most stubborn power-supply intermittent.

Huntron's DC Line Sentry is certainly not a revolutionary new piece of test gear. There is other equipment that can duplicate its functionality. Even some high-end digital multimeters can capture slow power-supply glitches.

Yet the $D C$ Line Sentry has its advantages: It's extremely easy to use, and it lets the more expensive alternatives be used for more demanding tasks. With a suggested retail price of $\$ 125$, it should find many applications in which it can prove its cost-effectiveness.

R-E

LOGIC ANALYZER

continued from page 18
Once the data is acquired, there are several different ways to display it. The diacrum command displays the captured data in the form of a timing diagram, as shown in Fig. 2. It should look familiar to anyone who has ever examined a data book or seen a logic analyzer in action.

A pair of cursors (which are barely visible at the left side of the diagram in Fig. 2) help to make measurements easier. Notice the numbers down the right side of the display. They indicate the value of the trace at the cursor position. As the cursor is scrolled through the display, those numbers change, as do the numbers across the top of the screen the indicate the position of the cursors and trigger, and timing differences between them.

The assembiy command displays any dala that has been captured as disassembled microprocessor instructions. The command is specific to the pod being used. For example, if you used a 8088 pod, and captured data from the data bus of an operating 8088 microprocessor, you could display those data as the microprocessor's mnemonics.

The numerical command displays the data in a user-chosen nurmerical format, which is entered from the format ment. The user can divide the data from various channels into eight user-defined fields. For example, 16 channels could be used to examine the address bus of a microprocessor, while another 16 channels gathered data from the data bus. Each grouping of input channels can have an 8 character name, and the data can be displayed in hex, binary, octal, decimal, or ASCII formats.

Switching to the record menu allows trace data, numerical data, setup conditions, and the like to be stored or recalled to or from disk. It is one of the features that become simple on PC-based systems.

The TRiccer menu allows up to 16 trigger words to be entered, while the trigger sequence menu provides a powerful trigger selection and editing menu.

The trigger sequence can have up to 16 levels, and can use a total of 16 continued on page 87

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity Teiephone ine powered - never needs a batiery! UD to $1 / 4$ mile tange. Adjustable from $70-130 \mathrm{MHz}$. Complete kil $\mathbf{\$ 2 9 . 9 5}$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or morel COD add $\$ 4$. Call or send VISA, MC, MO OECO INDUSTRIES, Box 607, Bedford Hills. NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARO

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 940.00$ per each insertion.
- Fast reader service cycle.
- Short lead time tor the placement of ads
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limiled number of pages avalable. Mail materials to: mini-ADS. RADIO-ELECTRONICS. $500-$ B Bi-County Blvd., Farmingdale. NY 11735.

CABLE TV CONVERTERS AND DESCRAMBLERS SB-3 $\$ 79.00$ TRI-BI $\$ 95.00$ SCRAMBLERS SB-3 $\$ 79.00$ TRI-BI $\$ 95.00$
MLD- $\$ 79.00 \mathrm{M} 35 \mathrm{~B}$ \$69.00 DRZ-DIC 5149.00. Special combos available We ship COD. Ouantity discounts Calt for pricing on other producis. Dealers wanted FREE CATAother products. Dealers wanted FREE CATA-
LOG. We stand behind our products where others fail. One year warranty. ACE PRODothers fail. One year warranty. ACE PROD-
UCTS. P.O. Box 582, Saco, ME 040721 (800) 234-0726.

CIRCLE 75 ON FREE INFORMATION CARD

FREE 1990 QENERAL CATALOG OF TOOLS \& TEST INSTRUMENTS. Conlact Easts new 148 page calalog offers products for testing, repairing and assembling elec. tronic equipment. It comes packed with over 10,000 quality products from brand-name manulacturers. Included are DMM's. probes, static supplies, hand tools, tool kits, iest equiprnent and more. Contains full color pho10s, descriptions and discounted pricing. CONTACT EAST. 335 WIllow St. North Andover, MA 01845 (508) 682-2000.
CIRCLE S5 ON FREE INFORMATION CARO

IT-10 INTERFACE TUTOR. Explore computer inlerfacing with high-quality IBM-PC-compatlble hardware. The circuit board with speaker, keypad, ADD, D/A, DIO, and stepping motor permits hands-on study of interfacing tasks and custom experlments. Includes manuals and exercises Product developed by the author ol Hardware and Soltware Interfacing for IBM PCs and used in colleges worldwide. ROYER ASSOCIATES, 206 Santa Margarita Ave., Menlo Park, CA 94025. (415) 326-8079.

CIRCLE 187 ON FREE INFDRMATION CARO

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable \{rom $\mathbf{7 0 - 1 3 0} \mathbf{~ M H Z}$. Use with any FM radio Complete kit $\mathbf{5 2 9 . 9 5}$ + $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add \$4. Call or send VISA. MC, MO. DECO INDUSTRIES. Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CAAD

New Products

MINIATURE COMPUTER

 SYSTEM. Ampro's miniModule expansion board couples their Litlle Board/386, 286, or /PC sin-gle-board computers to Reflection Technology's Private Eye display (Radio-Elec. tronics, February 1990) to form a complete system that takes up less space than a standard $51 / 4$-inch disk drive. The Private Eye display uses proprietary technology to create an image of a 12 -inch monitor in a miniature package that measures just $1.2 \times 1.3 \times 3.2$ inches and weighs about 2 ounces. When held to the eye or mounted on a headsel for hands-free viewing, the lmage appears to float in space in front of the viewer's eye with quality and resolution matching that of a PC display.The new MiniModule/Private Eye provides the electronics to drive the Private Eye as an IBM CCA-compatible graphics display when used with any PC. or ATbased application software and one of Ampro's Little Board single-board systems. It features rugged, industrialgrade design, a wide operating temperature range $\left(0-70^{\circ} \mathrm{C}\right)$, and CMOS con-

CIRCLE 26 ON FREE $\mathbb{N} f$ ORMATION CARD
struction for low power consumption (less than 0.5 watts) from the +5 -volt sup. ply. Each MiniModule is a 3.5×3.8-inch circuit board that attaches directly to a sin-gle-board system and interfaces via PC-bus-compatible signals.

The small size and low power consumption open the door for a wide range of portable applications for the MiniModule/Private Eye with single-board systems, in-
cluding telecommunications, portable terminals, mobile data displays, portable data-entry and -retrieval systems, medical electronics, industrial controllers, and maintenance and repair work.

The MiniModule/Private eye is priced at $\$ 250.00$ in quantities of 100..-Ampro Computers Inc., 1130 MounIain View/Alviso Road, Sunnyvale, CA 94089; Tel. 408-734-2800.

RS- 232 CONNECTOR KIT. The 272 -piece RS-232 Commercial Connector Kit from Jensen Tools is designed to simplify on-site fabrication and maintenance of RS-232 cable connectors. It can be used to make straight nullnomical patchcord connections between keyboard and TNC for packet radio, and for many other DB25 patchcord applications. The kit includes 16 plug (male) and 6 receptacle (female) 25 -pin connectors, one insertion/

CIRCLE 27 ON FREE
INFORMATION CARD
extraction tool, 50 cable ties, and a compact plastic storage box. Connector hoods
are available separately.
The RS-232 Commercial Connector Kit costs $\$ 69.50$.- lensen Tools Inc., 7815 South 46th Street, Phoenix, AZ 85044; Tel 602-968-6231.

MULTI-BAND RECEIVER. Providing continuous frequency coverage from $25-550 \mathrm{MHz}$ and from $800-1300 \mathrm{MHz}$, ACE Communication's MVT. 5000100 . channel hand-held receiver allows reception of civil and military aviation bands plus
all public-service bands. AM or narrow FM reception modes are selectable at any frequency. Twenty front-panel keys allow programming of 100 scan memory channels. Pairs of upper and lower limits for bands to be searched can be stored in ten separate search memory locations. RAM memory is backed up-by a long-life. lithium battery. The MVT-5000 offers an energysaving "sleep" mode, in which the computer will actually power down all operating circuits and display the word "sleep" on the LCD, and power up only periodically to check for active transmissions.
The compact radio measures $7 \times 21 / 2 \times 11_{2}$ inches and weighs only 13 ounces. It includes a $120-12$-volt wall plug adapter/charger, a fused DC cigarette-lighter charger cord, a telescopic antenna, a carrying case, and AA-size rechargeable batteries.
The MVT-5000 hand-held receiver has a suggested retail price of $\$ 499.00$ - $\mathbf{A C E}$ Communications, Monitor Division, 10707 East 106th Street, Indianapolis, IN 46256; Tel. 317-842-7115.

CIRCIE 28 ON fREE INFORMATION CARD

POCKET-SIZE DIGITAL MULtimeter. A.W. Sperry's DM-4200A 31/2-digit, rotaryswitch digital multimeter offers pocket-size portability without skimping on features. It incorporates nine functions on 33 ranges. The instrument provides a diodetest function, battery test, and HFE Iransistor test. It features an instant continulty

CIRCLE 29 ON FREE INFORMATION CARD
buzzer, a built-in test stand, overload protection, 150 hour battery life, and recessed input terminals designed for safety. The DM-4200A, which comes
with one set of test leads, a battery, and one installed fuse plus a spare, costs \$64.95.-A.W. Sperry Instruments Inc., 245 Marcus Boulevard, Hauppauge, NY 17788; Tel. 516-231-7050.

PROTOCOL ANALYZER SYS-

 TEM. Designed for use in troubleshooting asynchronous serial data-communications systems, Global Specialties' G5500 portable analyzer has extensive diagnostic capabilities to assist you in baud-rate analysis, data word format, ASC.II or hex data monitoring, and test-data generation. It can operate in both automatic and manual modes, and is smail enough tor field-service applications. When it's connected to a standard oscilloscope, it provides a 32character display.When combined with the GS501 Display Module and the GS502 Break-out Box, the GS500 is transformed into a complete portable, handheld system, requiring no oscilloscope. The break-out

CIRCLE 30 ON FREE INFORMATION CARD
box provides full breaking and patching of 25 lines, plus data monitoring of the analyzer's transmit and receive lines. Using the test-datageneration mode, the system can be used to check the operation of printers, terminals, and other devices when a transmitting device is not available. The battery. powered system will typically operate for 100 hours.

The G5500 analyzer, GS507 display, and GS502 break-out box cost $\$ 179.95, \$ 99.95$, and $\$ 119.95$, respectively.Global Specialties, 70 Fulton Terrace, New Haven, CT 06512; Tel. 203-624-3103.

HAND.HELD UNIVERSAL TIMERCOUNTER. A 10-digit frequency counter from Optoelectronics incorporates high-speed ASIC and custom LCD technology to provide direct-count frequency capability ($1-\mathrm{Hz}$ resolution in one second) to over 150 MHz . The model UTC 3000 features switched prescalers to maximize resolution for frequencies to over 2.4 GHz , and multiple preamplifiers for maximum usabe senstivity to allow efficient antenna pickup measurements. A 16 -segment bargraph displays input signal level to ensure reliable counting and to aid in RF security sweeps.
Front=panel controls-in= clude pushbuttons for gate selection (four gate times), function, and input selection, and also has hold, prescale, and direct-count select switches. Calibration and bargraph adjustments are accessible from the front panel, which also features a gate LED and a power switch. In addition to the frequency

With The Market Proven VA62A Universal Video Analyzer ${ }^{\text {ru }}$

Are you finding it tough to service today"s hi-tech VCR and TV circuits? Successful video servicers have toid us that, to them, the new technology meant lost profit and troubleshooting grief until they tried the VA62A's time tested, functional analyzing methods. The VA62A cuts servicing time and increases profits.

You can prove it to yourselt, in your shop, absolutely nsk freeand share in the protits successful video servicing can bring. Call 1-800-SENCORE (730-2873) and ask about our exclusive VA62A Instrument evaluation program. Tech-Tape Video Preview and FREE full line color catalog are also available.

Circle 31 on free information card

and bargraph display, the custom 120-segment LCD has annunciators for function, gate itme, number of cycles averaged, units, and low battery voltage.

The UTC 3000's universal timer-counter functions include period, period average, time interval, timeinterval average (0.1-ns resolution), and ratio. Both S0ohm and 7-megohm inpul amplifiers are provided. The overall range is 10 Hz to 2.4

GHz . With its field-installable internal Ni-Cd battery pack (providing up to two hours operation) and its compact size (approximately $4 \times 51 / 3 \times 13$ inches), the unit is highly portable. A 110-volt, $60 \cdot \mathrm{~Hz}$ wall plug adapter/ charger is included. Options include four different antennas, three probes, a precision 0.2-ppm TXCO time base, a carrying case, and a second parallel ballery pack to extend portable operation time.

The UTC 3000 hand-held universal counter timer costs $\$ 375.00$.-Opioelectronics, Inc., 5821 N.E. 14th Avenue, Fort Lauderdale, FL 33334; Tel. 305-771-2050.

DIGITAL TRANSISTORS. For use in swilching circuits, drivers, interface circuits, and inverters, and for interfacing with electromechanical systems, the "KSR" series of transistors from Samsung have built-in bias resistors. Eliminating the need for external bias resistors in their application

CIRCIE 32 ON FREE information card
circuits results in a signlficant saving of space.

There are 28 transistor types-half are NPN devices and half are PNP-available in three different styles of plastic packages. The 10-92 and TO-925 packages have three long parallel leads extending from the bollom. The compact SOr-23 is a plastic surface-mount package with minimal parasitic capactiance and inductance. Its small-outline package has gull-wing-shaped leads for base and emitter on one side
and for the collector on the other side.

Unit prices are 5 cents apiece for the 70-92 and TO-92S packages, and 6 cents apiece for the SOT- 23 packages, in quantities between 100 and 999.-Samsung Semiconductor, 3725 North First Street, San lose, CA 95134-1708; Tel. 408-343-5400.

INFRARED DETECTOR. While conversion of infrared light to visible Itght is not new, most converters require batteries or other power supplies for infrared detection. ComWay Sare/lite Systems' IR Detection Cand makes use of a recent technological development to passively detect infrared light. The detector is a busi-ness-card-size device that has transmissive phosphor crystals heat-seal laminated at its center. Those crystals emit an orange glow when subjected to infrared light. The cards allow quick checking of remote-contral devices for TV's, VCR's, satellite receivers, etc. They also can

Model 87

- 4/4cigir mode, 1 ms pect hold
- Min Max Average record made with Min Max AlerI ${ }^{\text {mu }}$
- Frequency, duty cycle ondeapacilance measuremenis
- 3-3/4 digit, 4000 count display
- Touch Hold(8) and Relative Modes
- Pralectiveholster with Fiex-Siand "
- Protected from blV Iromsients on 660 V
- UL 1244 listed - Mode in USA
- Three-year warranty/Ont-year calibration

MODEL 87

- Borklir display
- Truerms meosur eavenls
- Basi DCexturecy. 0.1%

2

MODEL 85
MOCEL 83

- Bask DCexurexy: 0.3% 0.1%

Reg. $\$ 239$

Call JOSEPH'S for Voive Priding On all Fhake Instruments
 -d ewlomntk polarity setection * Batiery-soving "Sleep Mode" powers* dowa display P Prolected from 6kV transienis on 660 V - Ul 1244 listed * Made in USA - Throw-Yeor warronly/One-yeer calibralion

 min miosil

8060A/8062A $41 / 2$ DIGIT HANDHELD DMMs

modit t060A moont \$062a

be used as warning sensors in laser labs, as they will flash if scanned by a laser beam.

The $I R$ Detection Card costs $\$ 6.95$ for a single sample. Custom printing is available on orders of 500 or more.-Com/Way Satellite Systems, P.O. Box 1729, Alamorgordo, NM 88310. REMOHE CONTROL TETER

12 stan

CIRCIE 33 ON FREE INFORMATION CARD

UHF POWER TRANSISTOR. Offering outstanding broadband characterislics and rug. ged packaging, the MRF650 UHF power transistor is Motorola's first RF device to offer guaranteed gain and efficiency specifications at three frequencies - 440,470 , and 512 MHz . Survival is guaranteed for severe load mismalches even when the device is subjected to high supply voltage and input sig-

CIRCIE 34 ON FREE information card

nals 2 dB above normal. The transistor is packaged in the popular 6-lead flange.

The MRF650 provides 50 watts of output power, higher than 55% collector effi ciency, and more than $5-\mathrm{dB}$ gain while operating from a 12.5-volt power supply. Sug. gested applications are in $12.5 \cdot$ volt base-station, commercial, and industrial am plifiers, and as a final amplifier in mobile radios.
The MRF650 UHF power transistor is priced at $\$ 27.75$ in quantities of 100 or more--Motorola, Isc., E-114, 5005 East McDowell Road, Phoenix, AZ 85008 . R-E

3 for \$75-10 for \$200-mix or match
CALL TOLL FREE FOR C.O.D. ORSENDCMECKTOORDER FAST DELIVERY
30 DAYMONEY GACKGUARANTEE (9FMTERLIMIT)

THE HOUSE SITTER THAT DOESN'T NEED A KEY

Use the keyboard so ses emergency phone numbers, high and low temperatures, listen-in time and more

ALERT/CANCEL key cancels automaric dial-out, allows you to answer phone

WHAT IS key lers you
fistern to function
serlings and diat-out
numbers

Use the keypoard to ask for informantion

SET key allows you so change previous serting

SENSOR ONIOFF key chooses the functions ONTM $\$ 129.95$
"This is $\mathbf{5 5 5 - 3 2 1 0}$. Alert condition is OK. Temperature is 65°. Elecrricity is on. Sound level is OK." Monitoring your home from work or a yacation spot is made easy with the Healh/Zenith House Sitter Security Monitor/ Dialer.

Monitors Your Home

When you call. the House Sitter will report on the AC electric power, the room temperature - comparing it with high and low limits you've already set. loud noises such as burglar alarms and fire alarms, the unit's own battery backup condition. and an additional aler condition. You can even listen to the sounds in the room using the built in microphone.

Dials Out In Alert Conditions

Set the unit to call out to your office, neighbors' and relatives' to announce any alert conditions that are outside preset limits. Up to four numbers can be programmed.
Order Toll Free 1-800-253-0570
The SD-6230 House Sitter is yours for only $\$ 129.95^{*}$. To order, call toll-free 1-800-253-0570. VISA. MasterCard, American Express or your Heath Revolving Charge card accepted. Use order code $620-\mathrm{XXX}$.

[^3]
Join the
 Electronics and Control Engineers' Book

 Club ${ }^{\circ}$TROUBLESHOOTING ELECTRONIC EOUIPMENT WITHOUT SERVICE OATA, Second Editlon. By R.G. Mrddieion. 320 pa, milus. This indispersable new edition fealures all the information that made the first edition so successful. plus the biest developments in digital resting. ohase checks. If frouleshooting, and repar of VCRs, stereos. TVs. tape recorders, and much, much more.
5 55092-3 Pub. Pt., $\$ 30.00$ CIut Pt.. $\$ 32.50$
PRINTE O CIRCUITS HANOBOOK. Third Edition. By C.F. Coombs. dre 960 F- 606 thus Here in one handy volume ball the information you need to design. manulacture. lest, and repair printed wiflng boards and assemblies. This new edrition leatures len all-new chapters. induding three on SMT. 126/097 Pub. Pt., \$64.95 Ciub Pt., $\$ 45.50$
souno sustem encinerimc. second Edition. By D. Davis and S. Oavts 655 pa , thas. The delinitive C. Oavis 665 pp, Hus. The delinitive
source tor all professionals fesponsible lor audio sysiem design, covening everything from concert halls to virtually every oscillator in use laday. Packed with proven strategies for solving design and tngineening problems and culting your clients' cosis.

MCGRAW-HILL ENCYCLOPEOIA OF ELECTRONICS ANO COMPUTERS. Second Editlon, 5. Parker, Editor-in. Chulf. 1,047 pe. 7.250 mus. Featuring 160 new and revised articies. this new edifion areats the entire spectrum of applications. devices. systems, and theory in areas ranging from the flow of electricity 10 hardware. sotiware, robotics, and IC tabricatuon.
459/09X Pub. Pt., $\mathbf{8 7 9 . 5 0}$ Club Pt.. 55495
COMAUNICATIONS RECEIVERS: Prindpies and Design. By Ulinch L Rotide and TTN. Bucher. $608 \rho \rho, 402$ Blos. Everything you need to know if you design of work with communications recervers, from theory to Dractical design approaches Coverage includes all types of recervers' shortwave. broadcast radar, military, marine, deronautical, and mort.

- your one source for engineering books from over 100 different publishers
 - the latest and best information in your field
 - discounts of up to 40% off publishers' list prices

ENGINEERING FUNOAMENTALS FOR THE PROFESSIONAL ENGINEERS' EXAM. Third Ed. By L. M. Polents. $432 \mathrm{pa}, 170$ mus. Features worked-out solutions and full explanations for all sample problems so you can learn how to solve them. Its a dependable learn how to prepare for the exam or a pertect way to prepare for the
on-lhe-pot reterence.
503: 231 Pub. Pr, 53950 Club Pt, 527.95

PORTABLE
 ELECTRONICS DATA BOOK

$360 \mathrm{pp} ., \mathrm{B} \times \mathrm{s}$. illus., soticover $585390-6$ A-10-Z coverage of all the essential lacts, figures. and formulas you need In a formal thats easy 10 use and eas to carry. John Douglas-Young has filled this handy on-lhe-job companion with equations algonitims, calculus rormulas, and BASIC programs in areas ranging from alterrating curren and amplitiers to transducers and waveguides and theyre all yours ABSOLUTELY FREE!

AUTOMATIC CONTROL SYSTEMS

 Flfth Ed. By B. C. Kuo. 736 pa. Hirs. Provides an overvow of automatic conisosystems, inctuding in-depth coverage of dassical control techniques. optimal control theory. and analog and digital comtrol system design. Muis up-dated edition discusses the latest ioeas on the use of computers to design control systems and as components of such systems$\mathbf{5 0 3 7 0 5} .4$ Pub Pt. $\$ 57.40$ Club PT.. $\$ 43.50$

CIARCIA'S CIRCUIT CELLAR. VOIume VII. By S. Ciarcia. 256 DD. 100 rflus., soffcover. More do-ni-yourself circutis from the master-sieve Ciarcia Step-by-step guidanca on projects rang. ing from a pray-scale video dipitizer and the Circuit Celiar At Compuler to paraliel intertacing mint the Neighborhood Strategic Detense inimative
fos bis Pub Pros $\$ 1955$ Clut Pr, $\$ 15.95$
THE COMPACT OISC: A Handbook of Theory and Use. By K. C. pohimann 288 pp ., illus. soltcover. The mosi readable and comprehensive guide to CD technology ofters clear descriptions of disc design and manufaciuring player circuitry ... and comparisons of diflerent types of players-all withoul complicated theoretical or mathematical discussions.
$\mathbf{5 5 5 0 9 6}$-6 Pub. Pt., $\mathbf{\$ 2 9 . 9 5}$ Club Pt. $\mathbf{5 2 3 . 5 0}$

MOBILE CELEULAR TELECOM MUNICATIONS SYSTEMS. BY WC.Y. Let. $442 \mathrm{go}, 215$ mus. A to Z coverage of slate-ol-the-arl ceiluiar sysle ms. from de-siate-ol-the-art ceiliuiar sysie ms. from de-
sinn to implemenation and Iroubleshooting Clearly explains spectrum efficiency. propagation modets and prediclion. imterterence treaiment, and more
$370 / 303$ Pub. Pt., 562.95 Club Prop 544.50

TRANSFORMER ANO INOUCTOR DESIGN HANOBOOK. Second EdIton. By Col W.T. Mclyman 440 pp . aflus. All the monformalion you need to illus. All the informalion you need to ers and inductors. without relying on outmoded approximation methods In readyreterthce tabular tormat, this new edition covers the latest equalions in transtormer and gapped deston applications. Se4s46-2 Put. PTin 55500 Club PT . 83850

MICROCOMPUTERTROUBLE SHOOTING ANO REPAIR. BY J. G. Stephenson and B. Cahill. 354 pp , ithes. soficover this nuts-and-bolts puide provides expert tips, troubleshooting tools ind shortcuts. and practical heip on decid ing if you really do inve to bring it th to the shop. Il also expiains technipues for anticipating and defending against most common compuler problems.
\$55105-7 Put. Pe.. S24.95 Club PTin 518.95
MICROELECTRONICS, SECONd Ed $8 y \perp$ Miltman and A. Grabel. 1.001 pa . 646 stlus. Takes you trom the basics of semitonductor properties to an understanding of the operation of solv-slate devices, and then to more advanced topics. Its up-10-date coverape, reaj-inte exampies, and proctical data make this an ideal reference for the working engineer. 423:30X Pub. Ph, $\$ 56.95$ CIub Pr. 54150

ENGINEERING MATHEMATICS HANOBOOK. Third Ed. By \downarrow d. Tuma. $5 t 2$ po, 觬s. Tus best-selling handbook gres you the essenlial maihematical cools-1ormulas, definitions. theorems. tabies. and models tor computer programming - thal you need for your day-10-day engineering calculations.
(854/433 Put. Pr. $\mathbf{5 5 2 . 5 0}$ Cfub Pr., 534.50

GASIC TELEVISION ANO VIDEO SYS－ TEMS．Fifth Ed．By 8．Grob． 592 pp mus．Provides the clearest pictufe of how television and video systems work．and what to do when they don＇t．Covers relevsion recervers．VCRS，video cam－ eras，and cable systems－all in readable． practical detai）．
249／3M Pub．Pr．．\＄39．95 Clù Pr．．$\$ 24.95$
BUILD YOUR DWN UNIVERSAL COMPUTER INTERFACE．BY 8. Chubb． 309 PD ，Wus，soficover，Guting you from theory to step－by－step assembly instructions，this ively manual shows you how to construct a computer interface and hook in up to vitualify any IBM or IBM com－ patible personal computer．including the XT．XT－285．AT，and System／2 Model 30 ． $585030-\mathrm{X}$ Pot PT． $\mathbf{\$ 1} 95$ Club PT．，$\$ 15.95$

Here＇s how the Club works to serve YOU：

－IMPORTANT INFOIIMAIION．．．IVB MAKE IT EASYTO GBT：

In our rapidly changing world，those sto perform best are those who are best Informed．Designed exclusively for the practicing engineer，the Electronics and Control Engineers＇Book Club prowides you with informiation that is relevant， reliable，and specific enough to meet your iteeds．Eaci，Club bulletin comes your way 14 － EG times a year and offers you more than 30 books to choose from－the besl and newest books from all puhlishers！

－DEPENDABLE SERVICE ．．．WE＇RE IIBRB TO IBLP：

Whether you wanl information aboul a book or Ihave a question about your membership，our qualified slaff is here to help．Just call ustoh－free or write to our Customer Service．We also make sure you gel only the books you want．All you do is simply tell us your choice on the lieply Card ard relurn it to us by the specified date，If you want the Main Selection，do nothing－$\$ 1$ will be sent 10 you aulomatically．（A small shipping and handling charge is added to each shipment．1 －CLUB CONVENIENCB ．．．VB DO THE WORK：
Beyond the benelit of timely information，Club membership offers many other benefits．For example，you get a wide cholce of books that cannot be matched by any booksiore－anywliere．And all your books are comieniently delivered rishl to your door．You also get the luxury of 10 full days to decide whether you want the Main Selection．If you should ever recelse a Main Selection you don＇1 wan because the Chbb bulletin came late，fusl return it for credil at our expense．
－SUBSTANTLAL SAVINGS ．．．ANDA BONUS PHGGKAM TUO！
In keeping with our goal to provide you with the best infinruation al the greatest possible savings，you will enjoy substantialdiscousnts－up to 40% I－on every book you buy．Plus，you＇re automatically eligible for our Bonus Book Ilan which allows you savings up to 70\％on a wide selection of books．
－EASY MEMBERSHIP TEIEMS ．．．IT＇S WOHTHWHILB TO BELONG：
Your only obligation is to purchase one more book－at a handsonse discount－ during the next 12 moulhs，after wilch you enjoy the benefits of membership with no further obligation．Either you or the Club may cancel membership anytima thereafier．

ANTENNA APPLICATIONS REFER． ENCE CUIDE Edjted by R．C．Johnson and H．Jask． 456 pa， 368 iflus，and boies．Covers the major applications of antenna technology in all areas of commu－ nications and their design methods Em－ phesues important new applications such as earth station，satellite，seeker，arrerath． and micruwartereiny anternas

RADIO HANOBOOK，Twenty－Thirc Ed．Edsted oy W I．Orr． $667 \mathrm{pp}, 1.073$ ditus．and tables．The latest edriton of the most complete，current resource on fadio technology and ls applications．Expert contributors show you how to select．de－ sign，buik，test arid operate all kinds of equipment
584638－1 Pub．ML，$\$ 2995$ Club PL， $\mathbf{3 2 3 . 9 5}$
AUDIO ENCINEERINC HANDBOOK． Edited by K B．Benson， 1056 pp． 722 筑 lus．The ideal on－titejot relerence for pro－ essionals who design，operate，and ser－ vice audio equipment．It＇s a one－volume soufce of tundamental audio acoustics en－ gneering information and practical hew－to source book covering qeneration，trans． mission，storage，and reproduction of the

Be sure to consider these important titles as well！

EUCHSEAUM＇S COMPLETE HANOEOOK OF PRACTKAL ELECTRONLI REFEREMCE popan．Thrd Ed By WH Buchsbaum．
 OM－LIME ELECTRICAGTROUBGE． SHOGTHEC．ByL Lunagurst Oy J．Mal CIRCUITS REFERENCE CUDE souters M．Pr．， 851 is

 INYRODUCIMC PC．DOS AMO MS－DOS

MANOBOOK OF ELECTRONICS CALCULA－ TONS FOR EWGHEERS AMO TECMNI
 A．H．Sedman
 INTRODUCTION TO DICTTAL SCNAL PRO． CESSNAC Syd． 6 Prochis and G Marolikes

CIREUIT OESICM FOR ELECTHONIC INSTRUMENTATION：haslof and DIAlla
 By D．Wobschal
日OE MIDDLETON＇S MANDQOOK OF ELEC TRONIC THME－SAVERS AND SMORTCUTS By A G Mrdileton
 DICITAL AMP MCROPROCESSOA TECM． Wouocr．Second Ed．8y P +0 Corrae
 OP．AMP MANDBOOK．Second Ed．By F．W

FOR FASTER SERVICE IN ENROLLING

 CALL TOLL－FREE 1－800－2－MCGRAW| Please enroll mee as a member and send me the Iwo hooks Indicaled，fhus the PORTABLE ELECTRONICS DAtA BOOK I am Io recerive one book for｜ust \＄2 89，the other at the discounted nuember＇s price，plus local tax． shippirk arsd hancllong churges I agmee to purctase a mithimum of one exditional toook during my firsi swar of membership an oulifnetl under the Club plan de． scribed in this ad．I anderstand that a shipping and harkilling charge is aifded to all shipmente． | |
| :---: | :---: |
| VuUr Freeci laala Hook | |
| 5\％5390－4 | |
| Write Code No．of the $\$ 2.89$ selection here | thrite Code No．Ior the First splection here |

Sigrualure
Narse
Address：Aph．©
Cly
State
2 $21 p$
This order subject to accepeance by McCiraw－Hill．All prices subject to chanpe without sotice．Mifer good only to new membors．Foreign member accepiance sublect to sperial conchitions．

HITACHI SCOPES AT DISCOUNT PRICES Digital Storage Scopes

 - DC to 100 MHz
 - Duar Channel
 - Delayed Sweap
 - CRI Readoul
 - Sweep Time
 - Autoranging
 - Trigger Lock
 bnght display tor even hap epare trent, trace obeerverion computer.
 Al Hetachi scopes inchude probes. schernetics, and Hitectr's 3 year worldwion warranty on parts and imbor. Many accoessones maviale for el toopels.

ELENCO PRODUCTS AT DISCOUNT PRICES

20MHz Dual Trace 0scilloscope

 \$375 M0-1251

- $6^{\prime \prime}$ CRT
- Buill in
component lester
- TV Sync

35 MHz Dual Trace Oscllloscope

$\$ 495$
M0-1252

- High luminance © "CRT - Imv Senailivity
- BKV Accateration Vollage - 10ns Rise Time
- X-Y Opersillon * 2 akia
- Delayed Triggering Sweep

Top quality scopes al very reasonable price. Contains alf desired features. Two $1 x, 10 x$ Drobes, diggrams and manual. Two year guarentee

PRICE BREAKTHRU on Auto Ranging DMMs 3 to choose from: MDM-1180 $\$ 24.95$	True RMS 4\% Diglt Multimetar $\$ 135$ M-7000 .05\% OC Accuracy 1\% Resistence with Froc. Counter and deluxe case		Multimetar winh Capancitance and Tranalator Tesiter $\$ 55$ CM-1500 Reads volts. Ohms, Current. Capacitors Transisiors and Diodes with case
$\begin{aligned} & \text { MDM-1181 } \\ & \$ 27.95 \end{aligned}$	Bench DPMS		AC Current Meter ST-1010
$\begin{aligned} & \text { MDM-1182 } \\ & \$ 29.95 \end{aligned}$	[4]		\$69.95
27 functions - Aho Manual Panges - Aucibie Contimuar - Dam hodd (MDHA1182) - 1\% Accurncy (MDM. 118)			1000 Amps Datas Peak Hold a Functions Danxa Case

9 Ranges
. $1 \mathrm{pl}-20,000 \mathrm{utd}$
$.5 \%$ basle accy
Zero control
with case

Solderiass Breadboards

9030
1,100
9,10
9,
9.134
2,170
0.436
2860

9,860
311
atins 835

All have color

Measures Cons lun 200 H Ceps $101-2000$ Res 0120 M

AC Clamp-On Curent Adapter ST-265

$\$ 25.00$
$0-1000 \mathrm{~A}$ AC Works whih most Dish

Wide Band SIgnal Generators	
	S6-9000
	RF Freq $100 \mathrm{~K}-450 \mathrm{MHz}$ AM Modulation of $\mathbf{1 K H z}$ Variable RF culpu:
SG. 9500 with Digital Display and 150 MHz builitin Frea Cit $\mathbf{5 2 4 0}$	
Digital Triple Power Supply	Supply
Fully pegulated. Short cartwl protected will 2 Limil Cont 3 Separate supplien	
XP-660 with Analog Maters \$175	
Four-Function Frequency Countera	
Frequency, Parlod. Toialize, Self Chack with High Subilized Cryslal Oven Oscillator, diglt LED display	

WE WILL NOT BE UNDERSOLD! UPS Shipplng: 48 States 5° nan
($\$ 10 \mathrm{Max}$ IL. Res., 7% Tay

Hew AUDIO GENERATOR SG-9200 $\$ 129$
 Low cistortion
 ($<.05 \%$)
 10-1 MHz Sine/Square Wave 600 ohm Ourpu Impedance, High Outpun Vohage

 short circuit protected XP-575 without meters $\$ 39.95$

GF-8016 Funclion Generator whth Freq. Countor

$\$ 249$

Sine. Square, Triangle Pulse, Remp, 2 to 2 MHz
Frea Counter $1-10 \mathrm{MHz}$
OF-8015 whhoul Freq. Mater $\$ 179$
C\&S SALBS INC. 1245 Rosenoonl. Deerfield. It 60015 (800) 292-7711 (708) 541-0710

Function Genarator	Decado Blox
Blox	\# $\quad 9610$
*9600	1962
-20- \$28.95	\% $\$ 18$.
Plowers sime mil sat waro	
from THz 10 1 MHz 	P9620 Capacifor Blox

AM/FM TRANSISTOR RADIO KIT with TRAINING COURSE Makes a great Model AMFM-108 school project
14 Transistors + 5 Diodes $\$ 26.95$ Cincits are lild out in sysiemabic order on an over. sized PC boand mo masy uncerstinding of the tow of facio sognals. from aifenna to speakior. Complefo coupe inguotes al parts. PC board and iruing menume When campletid you wil be proud to es play your masterpor

7 Transistor AM RADIO KIT $\$ 16.95$
15 Day Money Back Guarantee 2 Year Warranty
WRITE FOR FRXE CATAIOG

PICTURE THIS- YOURE SITTING IN A HAMMOCK ON A WARM SI NDWY aftemoon listening to your favorite radio station. Yisu watch in amusenient as your personal moot completes the last of your weekly chores. Only a dream? Not any longer, because now you can build a personal robot that cin pertorm the world's most dreaded chore--lawn mowing In the next few issues of RadioElectronies, we wilt explain hert you can buldo the Lawn watch yourfawn Ranger, a patented battery powened robot that can cut-grass automatically while you and yuur friends watch in mower cut the amazement.

The Lawn Ranger is not a rentote-control lawn grass by itself! mower. It is a robot that can actually "see" the grass while it cuts. It may seem hard to belicve, but the Lawn Ranter really can cot grass by itself. You mas have already seen the Lawı Ranger on television or in periodicals such as the New York Tínes, USA Today, Machine Design, or others Nrw, you can easily build and use the l-uwn Ranger for your yard, or even start your cown lawn maintenamce bisineis.

General description

The design of the Lawn
 Ranger is surpisinely simple it consentent an aluminum frame, pwateseric cutting inntors, two electric drive inotors, a plastic top a sensor assembly, twa 17 vole batteries. and an electronte controi sistem

The metid frame provites the basic strucuure of the robol and is compreal of tinch thish 9091 alut. nunum. Attas hed tothe fraine are two gaster wheels located in the frunt, and (tw) petred drive wheefs located in the rear Futb drve wheel is connected do a 24 . woll DC geat nimor thruigh a spuitigear interface That "directidrive" approach attow the robot tabe propeiled by a durabio drive system that does not rei sars chains or beles.
She Liwir Ranger, ater foun permanent-magne? 24 -volu.DC menons the twit drive mblursicorne whit an intemaf gear hox. for poed refuction The two cuttug moturs are synchronizad by a timing bdr fo prevent the blade from comble in contact with elach othore
 enhlliv bumper sivilt is altached to its outh cage thes swith will

 lop in the nothot for eny aceest by the perain

navigation information to the electronic control system.

Two 12-volt deep-cycle batteries allow the Lawn Ranger to operate for approximately $2-3$ hours on a single charge. Since the robot is 100% battery powered, there is no need for gasoline, oil. or the periodic maintenance associated with gasolinepowered engines. Battery power also allows the Lawn Ranger to nun very quiet and clear.

Electronic control system

The electronic control system is composed of four printed circuit boards; the CPU, motor controller. power, and mothertoard. Each board uses readily available off-the-shelf electronic components.

The CPU board contains a $\mathbf{Z 8 0}$ microprocessor and is the central "brain" of the Lawn Ranger. The board receives information from grass sensors that are designed to detect the position of cut and uncut grass located beneath the robot. The $\mathbf{Z 8 0} \mathbf{~ m i c r o -}$ processor continually processes the sensor data and calculates the correct steering path for the Lawn Ranger to follow.

The motor-controller board is used to control the speed of the drive motors. Velocity information from each drive wheel is fed back to that board in order to keep the Lawn Ranger's speed constant, even when climbing hills. Steering is accomplished by changing the speed of each rear drive whcel. For example, if the right wheel spins faster than the left, the robot will Ium to the left-just like a tank. The motor-controller board also contains the circuitry that is used to amplify the grass-sensor signals.

The power board contains DC/DC converters that convert the battery wollage to $+5-,+10-,+30$ - and -10 -volts DC. The board also contains power MOSFET's that are used to control the motors.

The motherboard provides the interconnection between the boards listed above. Each board plugs into the motherboard via an edge connector in order to facilitate the assembly and test of the electronic control system.

Operation

Figure I illustrates the path that the Lawn Ranger would follow on a typical lawn. The operator must first

FIG. 1-THE LAWN RANGER WOULD FOLLOW this path on atypical lawn. The operator must first manuatly steer the robol around the perimeter of the yard (while cutting grass) and around any obstacles whthin that area using the manual control unit.
manually steer the robot around the perimeter of the yard (while cutting grass) and around any obstacles within that area with the manual control unit. The manual control unit is a hand-held device that plugs into the rear of the mower with a 5-foot cable. The initial border cut around the yard is used by the Lawn Ranger for navigation, as it will steer along the border while it cuts grass. Because the mower will search for high grass, it will move away from any area that has been previously cut. That feature allows the robol to move around trees and other obstacles that are surrounded by cut grass. After all the borders are cut, you unplug the marual control unit, switch the mower into its automatic mode, and then watch it finish the job as you relax and enjoy a cold drink!

Safety

There are several safety features that have been added to the robot in addition to the shut-off switches. There are special cutting blades (see Fig. 2) that freely pivot at the end of the round blade disks. The centrifugal force created by the spinning disks causes the blades to swing outward where they will hold their position while cutting grass. But if the blades hit a solid object, they will give. thus reducing the cutting force and risk of serious injury. However, even with
that feature, the blades are extremely dangerous and should be treated as such.

Warning: just like any lawn mower, never leave the powered unit unattended. Also, make sure that an adult is always present while the mower is in operation. Always keep hands and feet away from the mowing deck, and make sure cutting area is free of people, animals, and debris. Never let children or animals ride on top of the robor.

Grass sensors

A close-up shol of the grass sensors is shown in Fig. 3. As you can see, the sensor consists of two protruding plastic prongs that contain an infrared light source (an IR LED) and a detcctor (a photo transistor). Fifteen of those sensors are placed in a row across the front of the Lawn Ranger. A partial schematic diagram of the sensor assembly is shown in Fig. 4. The sensors are spaced approximately 2 inches apart as measured from the center of each sensor.

The LED's of each sensor are connected in series. Light from each LED will cause its respective phototransistor to conduct and the emitter voltage to rise to +5 -volts DC. When a piece of tall grass passes between an LED and detector, the phototransistor will stop conducting and the emitter voltage will change from a digital " 1 "

FIG. 2-THERE ARE SPECIAL CUTTING BLADES that freely plvot at the end of the round blade disks.

FIG. 3-THE GRASS SENSORS contain an Infra-red light source and a detector.
will remain at +5 volts. The digital information from each sensor is sent to the motor-controller board for amplification and then forwarded to the CPU board for processing.

Computer program

The computer is used to locate the position of the cut-grass border as it passes beneath the mower. The location of the border will allow the lawn ranger to decide if it should steer left, right, or straight ahead.

As each grass sensor detects grass, it will output a digital "l" (high grass) or a "0". (cut grass or no grass). The computer will sample every sensor several times per second, and then store the information in memory. Ta-

FIG. 4-SCHEMATIC DIAGRAM of the grass-sensor assembly.
(+5 voits) to " 0 " (0 volts). Since cut grass is not tall enough to pass between the sensors. the sensor outputs
ble 1 illustrates a memory dimp that contains five samples of grass-sensor data.

In Table I, the actual edge of the cut-grass border is located between sensors 8 and 9 , with tall grass positioned between sensors $1-8$, and cut grass between sensors 9-15. The tallgrass region (sensors l-8) will record a large number of I's as the tall grass flows through the sensors (I's will periodically be recoded in the cutgrass region due to stray uncut blades of grass).

In order to calculate the correct position of the cut border edge, the computer program will add the number of " 1 " tallies for each sensor. If the number is greater than or equal to 2 , the computer will store the final value of I. If the summed value is less than 2, then a value of 0 is stored. For example, the final value stored for the first five data samples in Table 1 would be $11[111110000000$. Now, it is very easy to detect the location of the grass border. It is simply identified by the point where the string of I's end. A simplified flow chart of the computer program is shown in Fig. 5.

CPU board

Figure 6 is a schematic diagram of the CPU board. The CPU board is responsible for processing the sensor data and calculating the correct steering direction. It consists of a $\mathbf{2 8 0} \mathrm{mi}$ croprocessor (IC1), two parallel I/O chips (IC9 and IC10), a $4 \mathrm{~K} \times 8$-bit EPROM (IC6), two $4 \mathrm{~K} \times 4$-bit RAM chips (IC7 and IC8), and glue logic (IC2 through IC5). The CPU was chosen in order to keep the parts count low and the price within the budget of hobbyists.

The clock for the $\mathbf{Z 8 0}$ is generated by three inverters contained on IC2. A $2-\mathrm{MHz}$ crystal is used to ensure that a steady timing frequency is maintained over ambient temperature changes. The clock output (pin 6 of IC2) is tied to the Z 80 microprocessor and to pin 25 of IC9 and ICIO. Poweron reset is accomplished with an RC delay circuit made up of R4, Cl2 along with IC5-d, which is used as a buffer for the delay circuit. The RST line will reset two latch circuits upon power up.

The first latch circuit consists of IC4-a, IC4-b. IC3-b, and IC3-c, and the second circuit by IC4-c and IC4d . The latches are used to store the start and full stop signals. Those signals command the Lawn Ranger to move forward and turn off, respectively. When the robot moves for-

TABLE 1-GRASS SENSOR DATA

Sample \#	1	Byte 1					Sensor \#			Byte 2					
		2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	0	1	0	1	0	1	0	1	0	0	-	1	0
2	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0
3	0	1	0	0	1	1	1	0		0	0	0	1	0	0
4	1	0	1	0	0	1	1	1	0	0	0	0	0	0	0
5	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0

ward, the start signal will turn Q1 on and bring the stop move line low. When the robot shuts down, pin 8 of IC4-c and pin 6 of IC3-d will go low. That deactivates the inpul power relay.

Input/output

The CPU board uses two 28420 parallel input/outpul or PIO chips la-

FIG. 5-SIMPLIFIEO FLOW CHART of the computer program.
beled IC9 and ICIO. Each chip has two 8-bit I/O ports that are software programmable. Bit 7 of Port B on ICIO is programmed as an outpul. That output line provides a gating pulse that is used to sample the sensor data. When the line goes high, the sensors are enabled and sensor information is passed to the motor-controller board for amplification. After the sensor data is amplified, it is sent to ICIO on the CPU board.

The bits of Ports A ($0-7$) and B (0-6) of 1 ClO are defined as inputs that are used to receive the sensor data. IC10 transfers the information to the Z 80 microprocessor over the data bus for processing.

CPU construction and test

It is recommended that you use a PC board for the CPU, and you can either purchase one from TS1 (it's a plated-through board that's hard to make-see ordering information), or you can make one from the artwork provided in PC Service. Also, the 2732A EPROM is preprogrammed and is available only from TSI. Using the parts-placement diagram of Fig. 7, first solder the IC sockets to the board, then solder the remaining components. Then, carefully push all the IC's into their respective sockets. And remember, that some of the IC's are CMOS, which must be handled carefully. Figure 8 shows a fully assembled CPU board.

Apply +5 volts to TP4 and ground to TP6. Place a scope probe at pin 34 of $\mathrm{IC10}$; the scope should display a 1 kHz square wave. If you don't have a scope, verify that the voltages on pins $9,10,12,13,14$, and 15 of IC9 read 0 wolts DC. Now, as you temporarily ground pin 15 of ICl0, recheck IC9 for 5 volts on pins $10,13,14$, and 15 , and 0 wolts on pins 9 and 12 .

If your board passes those tests, it

All resistors are $1 / 4$-watt, 5\%, unless otherwise indicated.
R1, R2- 1000 ohms
R3-R7, R12, R15, R17-2200 ohms
R8--nol used
R9, R10, R19, R20- 3300 ohms, SIP
R11, R18- 3300 ohms
R13-22,000 ohms
Ri4-470,000 ohms
R16-47,000 ohms
R21- 120 ohms
Capactiors
G. C12- 100μ F, 25 volts, electrolytic
C2, C3, C5-C9. C11, C13, C15, C16,
${ }^{2}$ C18- $0.1 \mu \mathrm{~F}$, ceramic
Q -56 pF, ceramic
c10- $10 \mu \mathrm{~F}, 16$ volts, electrolytic
C14-not used
C17-1 $\mu \mathrm{F}, 35$ volts, electrolytic

Semiconductors

IC1-Z84C00-4PS microprocessor
IC2-74HCT04 hex inverter
iC3-74LS08N quad 2-Input AND gate
1C4-74LSOON quad 2-input NAND gate
IC5-74LS32N quad 2-Input OR gate
IC6-2732A $4 \mathrm{~K} \times 8$ EPROM (must be purchased from TSI)
IC7, IC8-2114L-2 $1 \mathrm{~K} \times 4$ RAM
IC9, IC10-Z84C20.4PS parallel vo Di-1N4448 diode
Q1-2N3904 NPN transistor
Other components
XTALI-2 MHz crystal
J5-10-pin IDC connector
S1-7-position DIP switch
TPi-TP6-individual pins or scraps of component leads
Miscellaneous: IC sockets
Note: The following items can be purchased from Technical Solutlons, Inc., P.O. Box 284, Damascus, MD 20872 (301) 253-4933: PC boards for the CPU, motor-controller, power board, and motherboard, \$39 each; programmed EPROM, $\$ 39$ (contalns computer program and firmware license); grass sensors, $\$ 8.99$ each; hand-held manual controller kit, $\mathbf{\$ 3 9}$; full CPU-board ktt, $\$ 129$ (Includes EPROM, PC board, and all parts); full kit for motherboard, S69 (contalns PC board and all parts); kit for power board, $\$ 149$ (contains PC board and ell parts except DC/DC converters); full kit for motor-controller board, \$169 (includes PC board and all parts); Lawn Ranger demo VHS tape, $\$ 19$ (retundable for orders of $\$ 100$ or more), Please add $\mathbf{\$ 8 . 0 0}$ for S/H (U.S. orders). Maryland residents add sales tax.

Electronics Engineers \& Designers!

 Take 3 books for only ${ }^{\$} 3.95$

 Take 3 books for only ${ }^{\$} 3.95$ (Values to \$168.40)

SHARPEN YOUR SKILLS-With Quality, Affordable Professional Books

COMPUTER SCIENCE

3059
$\$ 3.93$
Maser the an of modeling. rep dering and arumating a your IBM ${ }^{*}$ PC.
524 pp. Comarar ar 2

3188
48.9

A timely, high-level exminexion of the mechnical. murugerial, and economic istues surrounding communicetions nelworlss 300
Pp. Cownts as 2

3200
Guldelınes for eahaneing motware-driven proyect marage merx io large or small business. es. 320 p . Courts as 2 .

3278
$\$ 34.35$ able or exhmusulue guide aviltheir systems. 605 pp . Counts as 2

ELECTRONIC CIRCUITS

 ideas. 512 pp

924P

 This revised and updated edition is both eomprehensive, indussry-wide feference, and valuable collection of projectBreal through the 640 K limit and explore aterw level of computer power, 240 pp .

3258

ons for roublewhorang and repainng the lates E E electrical equipmen.
310 pp .

1938P Over 1.300 useful and versatil electronic circuit designs.
768 pp .

ENGINEERING MATH

3429
Y'our mource for well-deveioped. rendy-to-use compuer algonthm codes. 180 pp

$8225 \mathrm{P} \quad \$ 19.95$ Tested program mathematical computing needs. 233 pp.

3131
$\$ 26.95$
Aswemble your own powerful mikrocompuner syalem . . . It's easy and inexpersive 224 pp

327
$\$ 36.95$
Master the proven repair lechriques of an expern clectronics technician, 570 pp . Counts as 2

$534 . \%$
3185 Neatly and logically lists over 900 circuits along whth schematies and pinout diaprams. 592 pp .
Counts as 2
49.95

9825 A comprehensive manual for soldering and cleanins proaied circuit boards. 430 pp -

SH7s
54.95
the mgnikarl advances in communcations technology - 406 PP

2062P Complete cherrwic dueram parts lasts, and photon for building a velot) of propests $20 \% \mathrm{pp}$.

568.95

Designed to belp deal effective. by with tondey 's fast-proed EMC vechnology. 707 pp .

$3098 \quad \mathbf{\$ 4 . 4 . 5 0}$
A comprehensive overview of CADCAM, CAE, and CIM concepts, capabilties and appl). catrons 438 pp . Cownd as?

ELECTRONIC COMPONENTS

3199 SMJ leyout and design guidelines for efficient assembly processing. inspection and repal?. 180 pp . Countr as 2

3002 Fast, eccurate information guaranteed to simplify your search for the right IC. 624 pp .

3037 Buid your own neural networking breadboards - systems that can store and retrieve infermation like the brial' 160 pp .

9290 Provides many never-before-published troubleshooting techniques and case histories. 315 pp. Counts as 2
9.305 The solutions-oriented handbook for practieing engineers at att levels. Contans humireds of informative illustrations and diagrams demonstrating key prinetples 600 pp . Counts as 2

How the Club Works:

YOUR BENEFTTS: You get 3 books for $\mathbf{5 3 . 9 5}$ plus shipping \& handling when you join. You keep on saving with discounts of up 1050% as member.

YOUR PROFEXIONAL BOOKSTORE BY MAILA: Every 3-4 weeks, you will receive the EE\&D Book Club News describing the Main Selection and Alterrates, as well as bonus offers and special sales, with scores of tities to choose from.

AUTOMATTC ORDER: If you want the Main selection, do nothing and it will be senl to you autornatically. If you prefer another selection. or no selection a all, simply indicate your choice on the repily form prowided. You will always heve at leass 10 days to decide. As a member, you agree to purchase al least 3 books within the nexi 2 years and may resign at any time thereafter.

BONUS BOOKS: Starting imnediately you will be eligible for our Bonus Book Plan with savings of up to 80% off publishers" prices.

IRONCLAD NO-RISK GUARANTEE: If not satisfied with your books. return them within 10 days withoul obligation?

EKCEPTIONAL QUALITY: All books are quality publishers editions especially selected by our Editorial Board.

SEND NO MONEY NOW!

INTRODUCTORY IO-DAY FREE EXAMINATION

 ELECTRONICS ENGINEERS $\&$ DESIGNERS BOOK CLUB ${ }^{\text {sw }}$
Blue Ridge Summit. PA $17294-0860$
\square YES! Please accept nuy membership in the Electronics Engineers \& Designers Book Club and send my 3 volumes listed below billing me $\$ 3.95$. If not satisfied. I may refum the books within 10 days and have my membership cancelied. I agree to purchase 3 or more books at regular Club prices during the nexi 2 years, and may resign at any time thereafter. A shipping/handling charge and sales lax will be added to each order.

FIG. 7-ASSEMBLE THE COMPONENTS according to this parts-placement diagram.

FIG. 8-FULLY ASSEMBLED CPU BOARD. extensive testing of the CPU can be performed after the motor controller, power board, and motherboard are assembled and tested.

Still to come

In the next couple of issues of Ra-dio-Electronics we will explain how
you can finish building the Lawn Ranger. As far as the electronics portion goes, we ve still got to build the motor-controller board, the power board, and the motherboard, which holds all of the other boards together. Then we have to build and wire the sensor assembly, put together the mechanical frame, and connect every-

FIG.9-THE COMPLETE LAWN RANGER unit. We will get to the mechanical assemblies in laler issues.
thing together.
By the way, for a sneak preview look "under the hood," of what the Lawn Ranger will eventually look like, Fig. 9 shows the complete mechanical assembly, without the cover. You can see that everything fits together in a nice. compact package.

For those of you who still doubt the Lawn Ranger's capabilities. a VHS demo tape can be purchased, showing the unit in action; it's sure to make you a true believer. The cost of the tape is refundable with an order (see the Parts List for details).
are you tired of Laying out yet another PC board for some special power supply? Here's a possible solution to lessen the trauma: the EZ-DC generic power-supply PC board, designed to give you a choice of one or two linear supplies on a single 2×3 inch PC board. The layout is very versatile. and while one supply produces a fixed-positive voltage, the other can have any value desired. The choices are:

- Two fixed-positive supplies.
- One fixed-positive. and one ad-justable-positive supply.
- One fixed-positive, and one fixednegative supply.
- One fixed-positive, and one ad-justable-negative supply.

Of those configurations, the supplies can be either half-wave or fullwave. when a transformer with a cen-ter-tapped secondary is used, or you can build a single fuli-wave bridge of either polarity. You can also make it adjustable or not, as you prefer. Dual isolated grounds are possible. For the TO-220/221A regulators, there are four different 3 -terminal pinout configurations, which made the layout of
the EZ-DC quite challenging. Whether or not to rotate the regulator 180° helped reduce the reconfiguration problem to one of selective placement of jumpers.

The EZ-DC is a good basis for a bench supply. With two PC boards. you can build two fixed-positive sources, an adjustable-positive source. and an adjustable-negative source, all with or without isolated grounds. Each supply provides for a milliammeter to be inscrted at its reg. ulator input. In one supply on each PC board, the meter replaces a jumper. In the other, two adjacent pads are provided for meter leads. The foil connecting the two pads has to be cut with a razor blade or X -acto knife to use the meter: the point is marked by an arrowhead and an "X."

Different power-supply types

- Separate fixed-positive full-wave supplies with common grounds.

 Figure 1 shows a dual, full-wave, fixed-positive supply, using a common ground. Fig. I-a shows the pinouts of the two regulators, Fig. 1-b shows the schematic, and Fig. I-c shows the parts placement diagram.Supply \#1, on the lower half of the PC board, is always fixed positive. Supply \#2, on the upper half of the PC board, can be varied in configuration, and is, in this case, also fixed positive. Since the center-tapped transformer supplies equal voltages to each regulator, the most efficient arrangement is for both IC's to regulate to identical (or nearly so) voltages, such as +12 and +15 volts.

Where the difference is considerable, as between a +5 - and a +12 -volt supply, the lower voltage regulator must drop 7 volts more than the higher one, and its load current must be limited accordingly. Since the vollage drop across the regulator is multiplied by the load current to determine the regulator power dissipation. the lower the voltage, the more current that's available. The less power consumed by the regulator, the more that 's available to the load.

However, there has to be some drop across the regulator or it won't work. This is nominally 2 volts for the $78 \mathrm{XX} / 79 \mathrm{XX}$ fixed-voltage series. and about 2.5 volts for the LM317/ LM337 adjustable models. Also, the regulator needs a standby current of

FIG. 1-A DUAL SUPPLY, WITH TWO fixed-positive sources. The pinouls of IC1 and IC2 are shown in (s), the schematic is shown in (b), and the parts placement diagram is shown in (c), with supply ${ }^{\prime \prime} 1$ on the bottom, and supply ${ }^{W} 2$ on top. This same order of (a)-(c) is used throughout all succeeding figures, except Figs. 4 and 7.

3-10 milliamps, ignored here. Expect any current monitoring at the provided points to refleet this error.

A milliammeter would be inserted in supply \#2 in place of jumper JUI. with the negative terminal conneeted nearest to the heatsink when monitoring a positive supply. In supply \#]. connect the meter to the two pads near the right wing of the lower heatsink. Cut the foil between these two pads at point X as already mentioned. The negative meter lead goes to the pad
nearest to $I \mathrm{CI}$. Two pads V and W on both PC board and sehematic are unused here. Extra liltering capacitance can be added here for supply \#2, or these points can provide unregulated woltage for noncritical circuits. Pay attention to the polarity at point V which depends on the polarity of supply \#2; point W is ground.

- Separate fixed-positive and fixed-negative full-wave supplies. In Fig. 2, supply \#I is fixed-positive as before. The difference is how supply

FIG. 2-A DUAL SUPPLY, WITH SEPARATE fixed-negative and fixed-positlve sources. The organization of (a)-(c) is that of Fig. 1, but supply 2 has been made negative by reversing D2, D4. C3, and C4, and using a 79 XX for IC2 in stead of a 78 XX .
\#2 is jumpered, to accommodate a fixed-negative regulator, like the $79 \mathrm{XX} / 79 \mathrm{MXX}$ series; the " M " denotes medium-power versions, which are harder to find. Since load currents of less than 500 milliamps are suggested to prevent overheating, you should try to find the " M " versions, if possible. Again, due to the transformer's equal voltage distribution, equal but opposite polarity regulators would be most efficient. Some general information on selecting the transformer will be given later.

- Separate fixed-positive and ad-justable-positive half-wave supplies. Figure 3 shows supply \#2 with an adjustable regulator in a half-wave configuration, where both it and the heatsink are rotated 180° from the fixed regulator position. Don't use this version in applications where the load current exceeds 200 milliamps. Extra capacitance at V and W will give a smoother input to the regulator, but strains the transformer and diodes due to the higher half-wave charging currents. The accompanying table in Fig. 3-d shows $\mathrm{V}_{2 \text { (max) }}$. for different values of R1 and R2.

While current demands could be excessive, the voltage distribution with this arrangement may be advantageous. With one end of the winding grounded, the center tap supplies modest voltage for a low-voltage fixed supply, and the other end provides double that voltage from the adjustable supply. Where higher current is required. the diode and transformer arangement shown in Fig. 4 is suggested instead.

- Separate fixed-positive and ad-justable-positive full-wave supplies. The more features you want in any piece of equipment, the more it's going to cost. and the EZ-DC is no exeeption. The best transformer arrangement, shown in Fig. 4. uses two transformers with center-tapped secondaries, or a single transformer with dual center-tapped secondaries, if you're able to lind one. The relevant segment of schematic is shown in Fig. 4-a, and the relevant segment of the parts placement diagram is shown in Fig. 4-b.

Supply \#1 always has the layout shown in Fig. 1, and you can take the layout for supply \#2 from any other version you prefer, in any of the figures. For example, copy the upper part of Fig. 2 for a fixed-negative supply (remember to reverse D2 and D4),

FIG. 3-A DUAL SUPPLY, WITH SEPARATE fixed-postlive and adjustable-positive sources. Supply 2 is now made adjustable-positive, changling the jumpers as indicated. changing IC2 to an LM317, adding potentiometer R2, and shifting the other parts as shown. Also, only D1 and D2 are used, and the secondary of T1 is rewired. The accompanying table in (d) shows $\mathbf{V}_{\mathbf{2}(\mathrm{max})}$, for different values of R1 and R2.

FIG. 4-DUAL FULL-WAVE RECTIFICATION for a fixed-positive supply \#1, using either two single-secondary transformers. or a single dual-secondary version; (a) is the relevant segment of schematic, (b) is relevant segment of the parts placement diagram. Only the lower half of the PC board (supply "1) is shown; you can design the upper half (supply \#2) as you wish. For example, copy the upper half of Fig. 3 for an adjuslable-positive supply, or the upper par of Fig. 5 if you want an adjustable-negatlve dupply (remember to reverse D2 and D4).
or the upper part of Fig. 3 for an adjustable-positive supply. or. If you'd rather calculate your own values than use those provided in the table accompanying Fig. 3, use the following fornula:

$$
V_{2}=1.25 \text { volts } \times[1+(R 2 / R 1)] .
$$

For best results, keep: $\mathrm{RI}<240$ ohms. There's no way to control the minimum output, which should be abour 1.25 volts.

- Separate fixed-positive and ad-justable-negative half-wave supplies. A version with dual half-wave supplies, one fixed-positive and the
other adjustable-negative, is shown in Fig. 5. l's got the same limitations as the version shown in Fig. 3. For the greater current a full-wave supply can provide, use the rectifier arrangement shown in Fig. 4 (reversing D2 and D4), with the layout shown in Fig. 5. If you use a transformer with no center tap. Dl is connected as shown by the dashed lines. In that case, jumper pad 3 to pad 5 with JU7, and remove the connection to pad 6 .

The output pad is closer to the heatsink than you might prefer. but all patterns have multiple output points. Examine the foil pattern and select your own output pad. Always select a ground nearest the filter capacitor's ground connection to minimize hum, and use separate grounds for each supply.

- Separate fixed-ןositive full-wave supplies with isolated grounds. The arrangement for isolating the grounds between full-wave recitifiers is shown in Fig. 6. While this version has dual fixed-positive supplies, that needn't be the case. Use any version for supply \#2 you want, but watch the diode polarities. Cut the foil at the " Z " by the ground foil, and then the transformer secondary pads, isolating 3 from 4, and 5 from 6.

Arrowheads on the foil side show the exact points to cut. If you connect the supplies in series, the total output voltage is the sum of both. You can assume both regulators to be passing identical currents, but not necessarily dissipate the same power, since their regulator drops may differ.

FIG. 5-A DUAL SUPPLY, WITH COMBINED IIxed-positive and adjuslable-negative sources; it has the same limitations as Fig. 3. For greater current, use the full-wave approach of Fig. 4, with the layoul shown here. The D1 shown using dashed lines is connected this way for a transformer with no center tap. In thal case, jumper pad 3 to pad 5 wth JU7, removing the connection to pad 6.

FIG. 6-TWO SPLIT-GROUN"D fixed-positive full-wave suppiles. You can use any other version you want for supply "2, but watch the diode polarities. With a razor blade or Xacto knife, cul the ground foll at the "Z." Then, cul the transformer secondary pads al the arrowheads, isolating 3 from 4 , and 5 from 6 . If you connect the suppies in series, the total output voltage is the sum of both. Assume boit regulalors pass identical currenis, but don't necessarily dissipate identical power, since their reguialor drops may differ.

- A single full-wave hridge supply. The connections for a full-wave bridge are shown in Fig. 7. Figure 7-a shows the relevant segment of the schematic, and Fig. 7-b shows the relevant segment of the parts place-
ment diagram. Don't forget JU8 where an electrolytic would normally go. Again, use the top of the PC board for any version, whether positive, negative, fixed, or adjustable-but note the the diodes are shown for a
positive supply and must all be reversed if yours is negative.
- Separate fixed-positive and ad-justahle-positive supplies from a car battery. Figure 8 assumes that you use a standard $+5-,+6$ - or +8 voli regulator for IC1, and an adjustable version for IC2; the output of the second regulator is adjusted by RI and R2. The accompanying table in Fig. $8-d$ gives V_{2} to within 50 millivolts for different values of R1 and R2, but you can also use the previous formula.

The PC board layout

To ensure that the wide ground foil holds hum to under 1 millivolt, the best soldering layout was sacrificed; you may need to use more heat and solder than usual. Use 4-40 or 6-32 machine screws in the corner holes for mounting. One corner is attached to the ground foil as a metal spacer to electrically connect the PC board to a metal chassis. If you don't want to use it, cut it away.

The heatsinks are electrically connected to the middle pin of each regulator. For a fixed-positive model, it's ground, but it's different in each case; for example, it's the unregulated input in the adjustable-negative model. A little heatsink silicone grease will help transfer about 20% more heat, and can be worthwhile-especially if the regulators are sourcing very high current.

If you use the recommended heatsinks with the three through-the-PC board tabs. be careful you don't bend them underneath and cause a short. Space was left hoping to avoid this. but watch it. The regulators are fairly close to the edges of the PC board to possibly heatsink to a metal cabinet with a screw. Measure the tab's potential, to be sure it's grounded, and use insulation if needed. If you want full 1-A load current, use a fan.

Selecting components

Don't consider the following the last word on how to select power- supply parts. This is an abbreviated method to keep you from going very wrong with practical advice from personal observations. The transformer is a good starting point because they're "iffy," at best. Consider the secondary voltage; for example, a 10 -volt secondary. With little or no load, you may measure up to 12 volts. If the line voltage is 5% high, you'll measure 12.6 volts. Isn't that reasonable with

FIG. 7-A FULL-WAVE BRIDGE RECTIFIER as supply ${ }^{1} 1 ;(a)$ is the relevant segment of schematic. (b) is the relevant segment of the parts placement diagram. Remeber to reverse D1-D4 for a Hxed-negative version. The connections for a fuli-wave bridge are shown in Fig. 7, and don't forget to add JU8. You can also make supply \#2 on top any version, whether positive. negative, fixed, or adjustable.
the peak transformer voltage is perceived by the clectrolytic. Close to rated current, a diode drops about 0.8 volts, and 0.5 volts at low currents. Since the diode normally conducts to recharge the electrolytic, assume a worst-case drop of 1.2 volts. This is the figure to use with either half-wave or full-wave center-tap. With a bridge, two diodes conduct in series, so two drops must be added, for a worst-case of 2.4 volts.

The electrolytic perceives the secondary voltage, minus the diode drop(s). Unless you're right on the

FIG. B-REGULATING THE VOLTAGE FROM a car battery; the assumption is that IC1 is a standard $+5-,+6$-, or +8 -volt regulator, and that IC2 is adjustable, but set to a nonslandard value by R1 and R2. The accompanying table in (d) gives V_{2} to within 50 mllivolls for different values of R1 and R2, but you can use the formuia given in the lext.
no load? What's the figure at full load? Try several yourself and see.

In ten transformers sampled, only one was precisely correct at rated load. The average high was 7.56% off, the worst was 12.7%, and these were at the rated 120 -volt primary input. Those sampled came from a variety of suppliers, most with a rating of 1 amp or higher. If you order a transfomer, you can't be sure what you'll get until you measure it. Since you're dealing with peak value, it may look even worse. What you thought would be merely 14.14 volts may more likely be 15 - 17.8 volts peak.

The peak value is important, because the electrolytics need to be rated accordingly and the regulator drop is partly dependent on it. Also, a center tap may not always be at the exici electrical center of the second-
ary winding; about 3% enror was the worst observed. Assuming a transformer secondary voltage 20% above its rated value is realistic. but don't depend on it. As for RMS current. rate the transformer at 1.2 times the maximum expected load current for full-wave center-tapped, and 1.8 times for a bridge.

The diode voltage ratings should be twice the peak transformer voltage. While you might get by with diodes rated at the maximum load current, you should use ones with al least double that limit, for safety, especially for half-wave. The diode will dissipate heat through its leads and the PC board foil, so short leads are best.

The only generalization that can be made about the voltage drop across a diode is that it increases with current under forward bias. Thus, not quite all
edge of a electrolytic's voltage rating, ignore the diode drop(s) and use electrolytics rated at least equal to peak transformer voltage. In practice, electrolytics are built for safety, so one with a 25 -volt rating won't explode if 25.01 volts is used. How much you can get away with depends on the specific electrolytic or individual luck, so don't try it unless desperate. The current into and out of the capacitor causes heating; an electrolytic of large diameter will heat more than two smaller ones with the same capacitance when in parallel, due to less surface area per microfarad.

For an infinitely large capacitor, a constant voltage would be observed at the regulator's input. Most fixed regulators function properly with a 2 -volt drop, and 2.5 volts for adjustable versions, so select the electrolytic to get as close to these regulator drops as possible.

Since no electrolytic has infinite capacitance, the regulator voltage

Our Now and Highty Eliecevo Advinced-Placement Progrem for expenenced Electronic Tech nitione grants crocit for previous Schooling ind Protessional Experionce, and cen oreaty Toduce the the rogured to complete Progam and resch gradumion No residence achootigy re ofred for qumbinc Electronic Technictana Through the soeciel Progem you cen pill all of The loow ende of you utacronics buckpound rogether and eem your B S E E Degree Upgrade rour glatue and pey to the Engueering Lowi. Advence Amplily! Mory fongh in 12 monthe or man. Studerts and gredilies in tis 50 Staten ind froughout the world. Established Over 40 Yeersl Winte for tree Descriptive Lit orature

COOK'S INSTITUTE OF ELECTAONICS ENGINEERING

(a) ${ }^{2} 251$ Cveniss onive

JACKSON, MISSISSIPPI 39212
CIRCLE 58 ON FREE INFORMATION CARD

CIRCLE 108 ON FREE INFORMATION CARD
isn't constant. The average input voltage varies with load current. and the ripple voltage increases in peak-topeak value with current. At its lowest value during worst-case ripple. the regulator drop must be at !east 2 volts. The following formula for the minimum required electrolytic size in $\mu \mathrm{F}$ is a good approximation:

$$
C_{\text {filier }}=6000 \times\left.\right|_{\text {toad }} V_{\text {rippple }} .
$$

For example, if maximum load current is 0.5 amp , and ripple voltage is 2 volts P.P, the minimum electrolytic size is:

$$
C_{\text {fil }}=6000 \times 0.5 / 2=1500 \mu \mathrm{~F} .
$$

This is valid for full-wave, but needs to be doubled for half-wave. Now, work backwards, from output back to transformer. to determine the minimum peak voltage the transformer has to deliver. For now, ignore any over-voltage condition, since that's mainly important in determining the electrolytic's voltage rating. Starting with the desired regulated output voltage, say +12 volts, add up all the voltage drops present:
> 12.0 volts regulated output
> 2.0 volts minimum regulator drop
> 2.0 volts P-P ripple (somewhat arbitrarily selected)
> +1.2 volts worst case diode drop
> 17.2 volts minimum peak voltage from transformer secondary

Multiplying this sum by 0.7071 gives 12.16 volts, the minimum tolerable RMS secondary voltage. This works well with a normal 12.6 -volt secondary, but with only a 3% cushion for a low line-voltage condition. With the extra voltage the transformer provides, it should be efficient-for a linear supply. If the figures are 100 high for a standard transformer, consider using extra capacitance to achieve smaller ripple.

If you can select the transformer from several already on hand, or can afford a little extra cost, a transformer with twice the anticipated current rating could mean an extra volt or more in the secondary voltage. A higher secondary voltage will manifest itself as a higher regulator drop, causing more heating for any given load. This problem is insoluble when using an adjustable regulator to provide from 1.25-25 volts.

A clean 27.5 volts would have to be
available at the regulator input to accommodate the highest output. However. when adjusted downward to only 2 volis, the regulator drop increases to 25.5 volts. Output current must be reduced to prevent overheating.

Finally, here's a little information on the TO-220 regulators. While the adjustable models can handle somewhat higher voltage, consider 35 volts as a maximum for all. This includes the fixed versions from 5-15 wolts, inclusive. This same 35 -volt figure was kept in mind as a capacitor rating when considering component sizes.
The regulators protect themselves by automatically shutting down when overheated, and by current limiting when shorted. This limit may still be enough to damage the transformer and diodes. Yau-can consider a-reg.

PARTS LIST

All resistors are y_{4}-watt, 5%, unless otherwise Indicated.
R1-150-270 ohms (see Figs. 3 and 8)
R2-2000- or 5000 -ohm cabinetmounted potentiometer
R3-270-1500 ohms (see Fig. 8)

Capacitors

C1, C3, C6- $1000 \mu \mathrm{~F}, 16$ volts. electrolytic
C2. C4, C5- $10 \mu \mathrm{~F}, 30$ vohs, electrolytic

Semiconductors

D1-D4-1N4004 or 1N5404 silicon rectifier diode or equivalent
IC1. IC2-78XX. 79XX. LM317, and/ or LM337 3-terminal TO-220 voltage reguiators (see text)
Miscetlaneous: one or more copies of the PC board (see PC Service), suitable cabinet, red and black banana jacks, one or more 3-terminal regulator heatsinks (JAMECO part number 60308), $1 / 32-\operatorname{lnch}$ and $1 / 2$ inch drill bits. wire, solder.
ulator as a 1.5 -watt device with no heatsinking, a 5 -wat device with fairly good heatsinking, and a 12 -wall device with excellent heatsinking and air circulation.
To get a rough idea of safe operation, let one operate under worst-case conditions for five minutes, and then applying a tiny drop of room-temperature water to the top of the its heatsink tab. Even if a heatsink is attached, apply the water only to the top of the tab-awkward. but possi-
(Continued on page 58)

BUILD THIS PROGRAMMABLE

CRYSTAL-CONTROLLED PULSE GENERATOR

Build a single-chip pulse generator using a programmable crystal oscillator IC.

PETER A. LOVELOCK

UNTIL RECENTLY. BULLDING AN INEXPEN. sive, calibrated frequency source has generally involved dividing the output from a crystal oscillator to the specific frequency desired. Figure I shows a $1-\mathrm{MHz}$ crystal oscillator feeding a series chain of TTL decade counters to illustrate the technique.

A significant improvement is provided with the recent advent of the Statek Corp. (5I2 N. Main St., Orange, CA 92668) PXO series of Programmable Crystal Oscillators. These are hybrid IC's with on-board crystal oscillators mounted in 16-pin DIP's, drastically reducing the total PC board space and power required.

All members of the PXO series are identical internally, differing only in the base crystal frequency. The user can select any one of 57 different fre-quency-divider ratios, using two internal, series frequency counters, each with three TTL-compatible external taps for selting the divider ratios.

Figure 2 is a block diagram of the PXO-1000; it has an a $\mathrm{I}-\mathrm{MHz}$ internal crystal, and two internal programmable frequency dividers, with ratios available to let the user select output frequencies ranging from 0.0083 $\mathrm{Hz}-\mathrm{I} \mathrm{MHz}$. The IC was also made with provision for using an external
source to provide a base frequency that differs from any of the standard manufactured values of the PXO chips.

These IC's also allow either computer control of the frequency selected, by varying the logic levels of the taps, or manual control using either DIP or rotary switches. The PXO-1000 has $\pm 100 \mathrm{ppm}$ accuracy and $\pm 0,015 \%$ stability at room temperature, and consumes only 3.5 milliwatts, or 0.7 milliamps at 5 volts DC. The other standard available base crystal frequencies are 326.68 kHz (the PXO-32768), 600 kHz (the PXO-600), and 768 kHz (the PXO-768).

The PXO-1000

The drawback to the divide-by-N counter shown in Fig. 1 is the need for eight separate counters and a separate crystal oscillator. If 7490 divide-by-10 counters are used, the circuit will take up about 7 square inches on a PC board, and draw 45 milliamps at 5 volts DC for each IC. Thus, the dividers draw $P=1 \times E=8 \times 45 \times 5$ volts $\mathrm{DC}=1.8$ watts, and the oscillator an additional 0.1 watt, a total of 1.9 watts, a load that makes battery operation impossible,

By contrast, the PXO-1000 shown
in Fig. 2 uses under I square inch of PC board real estate, and only 3.5 milliwatts-perfect for battery operation. The output is available on pin 11 ($f_{\text {out }}$), and the external clock for special cases can be applied to pin 12 (EXC). Both clocks are fed to the clock-select logic, atlowing selection between either one depending on the state of pin 13 (csel), the internal clock if low, the external clock if high.

The output of the clock-select logic feeds the two internal programmable counters. They're in series, so the total frequency division factor is the product of the two. The first can be set to divide by $1,2,3,4,5,6,10$, or 12 , while the second divides by a power of ten, ranging from $\mathrm{I}-10^{7}$, inclusive.

There are eight possible settings for each, since there are three control bits for each and $23=8$. If all the divider ratios were unique, there' d be 8×8 or 64 distinct frequency divider settings possible. However, since both the first and second counter can divide by 1 and 10 , seven of those 64 factors will be duplicated.

The PXO-1000 is programmed using pins 2-4 ($\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}$) and pins 5-7 ($\mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4}$); these are the frequency counter control bits. Setting any of them to V_{cc} constitutes a logic high,

FIG. I-GENERAL PURPOSE PULSE GENERATOR needs a 1-MHz crystal osciltator driving a chain of high-power TTL decade counters like the 7490 4-bil decade counter.

FIG. 2-BLOCK DIAḠRAM OF PXXO-100̃o IC programmable frequency dlvider with internal 1-MHz quartz crystal osciilator. Frequency division ratios are selected by setting DIP switch S2; 57 distinct frequencies in the range from $0.0083 \mathrm{Hz-1} \mathrm{MHz}$ can be generated. Each of the SPST switches a-f in S2 control a single bit from among pins 2-7 ($\mathrm{P}_{3} \mathbf{P}_{2} \mathrm{P}_{1}$ and $P_{5} P_{5} P_{4}$), the select lines tor the two counters. Here, a +4.5 -volt $D C$ supply using $B 1$ provides power.

FIG. 3-ROTARY SWITCHES AND DIODE MATRIX D1-D18 set the frequency counlers of the PXO-1000, eliminating DiP switch $\mathbf{S} 2$ in Fig. 2. D1-D18 act to block incorrect bits from among pins 2-7 ($P_{3} P_{2} P_{1}$ and $\left.P_{8} P_{5} P_{4}\right)$ from being set high. D1-D9 acts with $\$ 3$ to control $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$, while D10-D18 acts with S 4 to control $\mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{5} . \mathrm{S} 1$, the ONOFF switch, and J 1 , both present in Fig. 2, have been omitted, but would be needed here.
and ground to a logic low. The frequency division effect of pins 2-7 $\left(\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}\right.$ and $\left.\mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4}\right)$ is summarized in Table 1.

The settings of pins 2-4 ($\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}$) aren's in directly ascending order for the first counter. At the low end, the frequency division factor jumps from I for a setting of 000 to 10 for 001 , and back down to 2 for 010 , while at the high end, the factor jumps from 6 for 110 , to 12 for 111 . However, the settings for pins 5-7 $\left(\mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4}\right)$ do go in order, and the binary number corresponding to thesc three bits is the exponent of the power of 10 for the frequency division factor involved. Thus $\mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{6}=100$ is binary for 4 , or a division factor of 10^{4}.

If the eight possible settings for the -two 3-bit groups arc artanged as an 8×8 matrix, the output frequencies appear as the 64 entries in Table 2. As mentioned above, seven frequencies are duplicated, so there are only 57 distinct frequencies. In Fig. 2, they are generated by programming the two counters using DIP switch S2. Thus, the entries for row two are shifted one column left from those of row one.

For example, to generate 100 kHz , you can use settings of either $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}=000001$ or 001000 . As a more general example, $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}=100010$ causes division by $4 \times 102=4 \times 100=400$. Since the crystal frequency is 1 MHz , the output frequency is fout $=1$ $\mathrm{MHz} / 400=2.5 \mathrm{kHz}$.

Figure 3 shows an altemative manwal approach using rotary switches S3 and S4 to control diode matrix D1-DI8, if you find using a -DIP switch awk ward. In this case, S3 selects the decade frequencies from 0.1 $\mathrm{Hz}-\mathrm{I} \mathrm{MHz}$, while S 4 selects the eight output divisions from $1 / 1-1 / 12$, determining the final output frequency, as shown in Table 2. Also, you can see that the +4.5 volts DC from battery BI in Fig. 2 has been replaced in ${ }^{-F i g}$. 3 with +5 volts DC, which is also acceptable.

If you're only interested in 0.1 $\mathrm{Hz}-1 \mathrm{MHz}$ using the second counter. then exclude S3 and D1-D9. leaving pins 2-4 ($\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}$) open. Likewise, if you're only interested in division by the integer factors provided by the first counter ($1,2,3,4,5,6,10$, and 12), you can similarly exclude $\$ 4$ and D10-DI8, leaving pins 5-7 ($\mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4}$) open. The parts placement diagrams

TABLE 1-PXO-1000 FREQUENCY DIVIDER PROGRAMMING CODES

\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	\boldsymbol{P}_{3}	DIVIDER RATIO	\mathbf{P}_{4}	\mathbf{P}_{5}	\mathbf{P}_{6}	DIVIDER RATIO
0	0	0	$1 / 1$	0	0	0	$1 / 1$
0	0	1	$1 / 10$	0	0	1	$1 / 10$
0	1	0	$1 / 2$	0	1	0	$1 / 10^{2}$
0	1	1	$\left.1 / 3^{*}\right)$	0	1	1	$1 / 10^{3}$
1	0	0	$1 / 4$	1	0	0	$1 / 10^{4}$
1	0	1	$1 / 5\left(^{* *}\right)$	1	0	1	$1 / 10^{5}$
1	1	0	$1 / 6$	1	1	0	$\mathbf{1} / 10^{6}$
1	1	1	$1 / 12$	1	1	1	$1 / 10^{7}$

Notes: (a) 33.3% duty cycle (${ }^{\text {(}}$);
(b) 40% duty cycie (**);
(c) All others 50% duty cycle.
for the PC boards and the part layout for the DIP- and rotary-switch versions of the PXO- 1000 are shown in Figs. 4 and 5, respectively. The PC foil patterns for both versions are shown in PC Service.

Note that pins $10-15$, the special function pins of the PXO-1000, are
unused. Should you wish to use them, several have already been discussed. Of the remainder. pin 10 (TEST), when set high, multiplies the output frequency by 1000 , except when the product of the programmed divider ratios for each counter is under 0.001 .
Pin 14 (RESET) resets both counters

FIG. 4-PARTS-PLACEMENT DIAGRAM for the dip-switch version of the PXO-1000 circuit.
when set low, and sets pin 9 (our) low. Also, all inputs except pins 12 (exc) and 14 (RESET) have intemal pull-down resistors. whereas pin 14 (rESET) has an intemal pull-up resistor.

Construction

Both the DIP- and rotary-swilch versions in Figs. 2 and 3 can be installed in small plastic or metal enclosures with three AA or AAA

TABLE 2-PXO-1000 DIVIDER FREQUENCIES

	S ${ }_{4}$			1	2	3	4	5	6	7	8
S_{3}	S_{2}		P_{4}	0	0	0	0	1	1	1	1
			$\mathrm{P}_{\text {S }}$	0	0	1	1	0	0	1	1
	P_{1}	P_{2}	$\begin{aligned} & P_{6} \\ & P_{3} \end{aligned}$	0	1	0	1	0	1	0	1
1	0	0	0	1 MHz	100 kHz	10 kHz	1 kHz	100 Hz	10 Hz	1 Hz	0.1 Hz
2	0	0	1	100 kHz	10 kHz	1 kHz	100 Hz	10 Hz	1 Hz	0.1 Hz	0.01 Hz
3	0	1	0	500 kHz	50 kHz	5 kHz	500 Hz	50 Hz	5 Hz	0.5 Hz	0.05 Hz
4	0	1	1	333.3 kHz (*)	33.3 kHz	3.33 kHz	333.3 Hz	33.3 Hz	3.33 Hz	0.33 Hz	0.033 Hz
5	1	0	0	250 kHz	25 kHz	2.5 kHz	250 Hz	25 Hz	2.5 Hz	0.25 Hz	0.025 Hz
6	1	0	1	$200 \mathrm{kHz}\left({ }^{* *}\right)$	20 kHz	2 kHz	200 Hz	20 Hz	2 Hz	0.2 Hz	0.02 Hz
7	1	1	0	166.67 kHz	16.67 kHz	1.67 kHz	166.67 Hz	16.67 Hz	1.67 Hz	0.167 Hz	0.0167 Hz
8	1	1	1	83.3 kHz	8.3 kHz	833.3 Hz	83.3 Hz	8.3 Hz	0.83 Hz	0.083 Hz	0.0083 Hz

Notes: (a) 33.3\% duty cycle (${ }^{\circ}$);
(b) 40% duty cycle (**);
(c) All others 50% duty cycle.

FIG. 5-PARTS-PLACEMENT DIAGRAM FOR THE ROTARY-SWITCH version of the PXO-1000 circuit.

ת๘兀几
FIG. 6-AN APPLICATION OF PRECISION LOGIC GATE TIMING using the PXO-1000. If you program 10 kHz , NANO-gate IC2 is enabled on each positlve half of the output square wave, for a pulse width of $50 \mu \mathrm{~s}$. That lets $501 \cdot \mathrm{MHz}$ square wave pulses from pin 11 (fout) of the PXO-1000 pass though IC2 until pin 9 (outl goes low on each bottom half of the square wave. In that case, IC2 is disabled, glving a precise gate time. When both inpuis go high. the output goes low, inverting the $1-\mathrm{MHz}$ square wave.
alkaline cells. Maximum supply voltage for the PXO- 1000 is +6 volts DC. Since the PXO-1000 draws 1 milliamp, three AA cells give hundreds of hours of use.

Mount the PXO-1000 in a low-profile 16 -pin DIP socket. Mount both rotary switches and an ON/OFF switch for B! on the front panel.

The PXO- 1000 intemal crystal oscillator is available on pin 9 (out). It's buffered for TTL or CMOS loads. but you should never connect it to a load drawing over I milliamp. If you don't know how much current will be used, put a $5 \mathrm{~K} \quad 1 / 4$-watt resistor from pin 9 (out) to Jl to limit current. Note that Jl only appears in Fig. 2, not Fig. 3, but you'll need it in both versions.

You may also want a large coupling capacitor from pin 9 (out) to the center post of Jl , although it'll distort even a low-frequency square-wave output. Use a 3 -cell AA or AAA battery holder for BI, a suitable case, and $1 / 4$-inch spacers to keep the board from shorting.

Applications

What can you do with all these frequencies? As mentioned earlier, the range of $0.01 \mathrm{~Hz}-\mathrm{I} \mathrm{MHz}$ in decade steps can be used for a variety of calibrations, while some other applications may not be as apparent. For example, 5 Hz can drive a clock motor, 1, 25. and 50 Hz are a useful general-purpose time base, 100

PARTS LIST

Semiconductors:
D1-D18-1N4148, switching diodes
IC1—PXO-1000, programmable crystal oscllator
IC2-7400 quad TTL nand gate (see text about precision timing application)
Other components:
B1- 4.5 -volt DC supply using three 1.5 -volt DC AA or AAA alkaline cells (optional; a 5 -volt DC supply could be used inslead)
J1-RCA phono jack (for both the DIP. and rotary-switch versions)
S1-miniature SPST toggle switch (for either the DIP- or rotary- Switch versions)
S2-DIP switch with 6 SPST switches (for the DIP-switch version)
S3, S4-SP12T rotary switch (for the rotary-swilch version)
Miscellaneous: PC board (see PC Service), 3 - cell AA or AAA battery holder, suitable plasic box with aluminum cover (for either the DIP- or rotary-switch versions), wire, solder, knobs (for the rotary-switch version), $3_{\text {s-inch }}$ spacers, and hardware.
Note: The Statek PXO-1000 Is available from Ryno Electronics, 1637 North Brian Street, Orange, CA 92667, (714) 637-0200, for $\$ 12.00$ postpaid. An etched and drilled PC board (for the rotaryswitch version only) is available from R\&R Associates, 3106 Glendon Avenue, Los Angeles, CA 90034 , for $\$ 3.00$ posipald. For both Items, California residents include appropriate sales tax.
$\mathrm{Hz}-10 \mathrm{kHz}$ are useful for audio, 25 kHz is in the ultrasonic transducer range, $500 \mathrm{kHz-1} \mathrm{MHz}$ is useful for digital applications.

By using period instead of frequency, or $T=1 / f$, you can perform precision logic timing, as shown in Fig. 6. If you program 10 kHz , Nand-gate IC2 is enabled on each positive half of the output square wave. for a pulse width of $50 \mu \mathrm{~s}$. That lets $501-\mathrm{MHz}$ square wave pulses from pin II (fout) of the PXO-1000 to pass though IC2 until pin 9 (OUT) goes low on each boltom half of the square wave. In that case, IC2 is disabled, letting you pick a precise gate time. If both inputs go high, the output goes low, inverting the $1-\mathrm{MHz}$ square wave.

R-E

ALL ABOUT SURROUND SOUND

JOSEF BERNARD

"MOVIES ARE BETTER THAN EVER!" screamed the advertising banners in the middle of the 1950's as theatrical audiences dwindled and stay-at-home TV audiences grew. Hollywood tried everything it could think of to maintain its hold on the vanishing moviegoer: Cinerama, 3-D, CinemaScope, VisiaVision, Todd-AO, six-track stereo sound, eight-track stereo sound. Smell-O-Vision (no kidding!), and other schemes now better forgotten. One or two of the concepts and techniques that were introduced during that period proved to have some worth and they or their descendants are with us still today. The stereo and surround sound we enjoy from our audio and video equipment at home are among the benefits that have been derived, at least in part, from the motion picture industry's frantic - 50 's efforts.

Early attempts

Of the early efforts to provide realistic sound in a theatrical environment, perhaps the best remembered (if it is remembered at all) is Walt

Disney Studios' Fantasound, a four-teen-traek process that was used for Leopold Stokowski's orchestral accompaniment to 1940's animated Fantasia, Each member of an array of microphones spread out before the orchestra picked up the sound emanating from its region. The signal from each mike was recorded on its own soundtrack and during playback was reproduced by a speaker positioned behind the screen in a location corresponding to that of the mike during recording. The effect was a realistic spread of the orchestra before the theatrical audience.

With the cinematic wide-screen spectaculars of the ' 50 's came multitrack stereophonic-actually, sur-round-sound. Mike Todd's widescreen extravaganza Around the World in 80 Days included such effects as a train (with the theatergoer as passenger) crossing a rickety old bridge; you could hear the steam engine in front of you and the clickety-
clack of the wheels on the rails being reflected from the girders of the bridge on either side of you as you passed them. Wow!

At home, in the late ' 50 's and early ' 60 's, record players (there weren't many audiophiles with turntables back then) and a very few tape recorders went stereophonic. By that time it had been realized that a more-or-less convincing soundstage could be recreated in front of the listener from just two channels of sound, one carrying lefi-ear information and the other carrying that for the right ear. The term "binaural" was sometimes used in place of "stereophonic." but its use soon became reserved for a specific method for stereophonic recording and listening, one with which most people did not wish to become involved because of its inconvenience.

The binaural technique, which enjoys a very limited-but extremely spirited-popularity today requires special recording techniques, and
binaural recordings musi properly be auditioned through earphones. Only two microphones are used. The idea is to reproduce as closely as possible the sound of a performance (or environment) as it is perceived by the ear. To this end, binaural recording techniques have used models of the human head (and ear) fitted with microphones (see Fig. 1), and even microphone mounts that were affixed to real, live, human heads. When prepared properly and with care. a binaural recording can provide the listener with a surround sound experience that includes not only front, sides and rear, but up and down as well. Earphones must be used to deliver the sound directly to the ear and preserve the phase relationships of the signal as recorded.

In the late 1970's, home discophiles could have their choice of two systems for four-channel recordings (SQ and QS), with two speakers in front and two behind (see Fig. 2). Both used matrixing systems to encode the quadraphonic (sometimes spelled "quadriphonic') signals on black vinyl records, and required new designs in cartridges and styli to retrieve the signals from the record grooves. The two systems offered to the public were incompatible and that. together with a surfeit of gimmicky recordings similar to the "Ping-Pong Stereo" ones that fortunately disappeared quickly from the two-channel scene, caused the quadraphonic movement to founder and sink with only a few diehard survivors left today. There weren'i many people who wanted to listen to the Tijuana Brass while sitting right smack in the middle of the band; maybe just a few frustrated horn players.

Extracting ambience

After the failure of quadraphony, the place and purpose of surround sound were reexamined and it was decided that, for the most part, audio channels in addition to the front two conventionally used for stereo should be subordinate to them. It would be OK to have more than two channels, but the main audio information should come from in front of the listener and the secondary channels used more to provide a feeling of am-bience-to recreate the original (or a simulated) recording environment.

In the 1970's, a simple way to recover ambience information from

FIG. 1-IN TRUE EINAURAL RECORDING, a mechanical replica of the human head and ears ensures the proper capture of phase relationships. This is the MKE 2002 binaural dummy-head stereo-microphone selup from Sennheiser. To hear the special stereo effects, the recording must be listened to with high-quallty headphones.

FIG. 2-THE QS-100 4-CHANNEL Converter: Synthesizer/Amplifier from Sansui. This is an example of a quadraphonic amplifier in the QS format.
conventional stereo recordings was proposed. That ambience informa-tion-which consists largely of sounds from outside the soundstage located between the stereo microphones (assuming, for the sake of simplicity, that just two are used)may simply be sound retlected from the walls and ceiling of a concert hall, or it may come from sources such as
instruments positioned intentionally outside the bounds of the soundstage. as illustrated in Fig. 3. One of the ways that the ear pinpoints sound sources is by determining phase relationships. If, for example, the sound waves heard from a pair of speakers by the left and right ears are in phase. the sound source is perceived as being between the two speakers. If the

FIG. 3-AMBIENCE INFORMATION recorded as a lefl-minus-righl difterence signal can be used to expand a soundslage and even to localize sounds coming from beyond the bounds set by the locations of the microphones or speakers.

FIG. 4-BY iNVERTING THE POLARITY ol one of a pair of signals and then summing the two, you can obtain the difference between them.

FIG. 5-TME MATRIX SURROUND CIRCUIT used in receivers such as Teac's AG-75 extracts ambience information from a pair of stereo signals by finding the difference between them.
waves are out of phase, the sound seems to come from "beyond" the speakers, and some recordings intentionally include out-of-phase material
to provide special auditory effects.
Out-of-phase information can be described mathematically as the difference bet ween the left and right sig-
nals, or $\mathbf{L}-\mathbf{R}$. The relationship between an " L " waveform and an " R " one is depicted in Fig. 4. By inverting the phase of the right sig-nal-thereby creating a " $-\mathbf{R}^{\text {" }}$ oneand adding thal signal to the nommal "L" one, the " L - R" difference signal representing ambience information is obtained. By connecting a third (ambience channel) speaker between the "hot" speaker terminals of a stereo amplifier, an $L-R$ signal is obtained and reproduced through that speaker. If you place the speaker behind you, and adjust its volume so that it's unobtrusive. recordings that contain a goodly amount of natural ambience material will take on a spaciousness that can make you feel a lot more like you're listening to a performance in a real performance environment rather than your living room.

Matrix surround sound

A number of today's stereo receivers include a feature called "matrix surround sound." or just "matrix surround." the "sound" having disappeared somewhere. The term" matrix" refers to the way the signals are combined to obtain the "surround" signal. The process is a passive onethere is no special encoding or decoding matrixing circuitry used. Ifgure 5 shows a circuit used in one matrixsurround receiver. When the a SPEAK. ers bution is engaged, normal stereo sound is heard from the speakers connected to the A terminals; when the is speakers switch is closed, the output of the amplifier is fed to a second set. When both switches are closed, the A speakers reproduce the normal stereo signal; what goes to the b-s speakers, however. is now the difference between the left- and right-channel signals. It tums out that matrix surround is nothing more than a "ready-to-use" version of the "third channel" ambience system described above. Place the в speakers behind you, and you have an ambience synthesizer. You also get a free surprise, which is a subject to which we'll return.

Some sound equipment also boasts a "Hall Surround" mode. While there is definitely a Ray Dolby involved in Dolby Surround (see below), there is no Mr. Hall of the same prominence involved in audio processing. The term "hall" refers simply to a large room (as a concert hall); presumably time delay or reverb effects are added
to the rear channel sound to give a feeling of spaciousness.

Sonic holography

In photography, holography is a process that yields three-dimensional images from a single piece of film without the need for special viewing apparatus (as opposed to the older method that requires a separate picture for each eye-the system used, for example, by View Master reels). Sonic holography produces a sonic image having depth, and a degree of surround effect, using just a pair of stereo speakers.

Sonic Holography, which is a technique patented by Carver Corporation, works on the principle that when we listen to a pair of stereo speakers the phase relationships contained in the recorded or broadcast material are muddied by right-channel sound "leaking" to the left ear, and leftchannel sound similarly showing up at the right. What the process does (see Fig. 6) is to inject some degree of out-of-phase right-channel information into the left-channel signal (and vice-versa). If that is done with the right time delay, the out-of-phase right-channel signal mixed with the left-channel one will arrive at the ear at the same time as the right-speaker "leakage" does. and the in-phase and out-of phase signals will cancel one another. What's left will be pure leftand right-channel sound as engineered, providing a sense of depth and expanse otherwise impossible in a two-speaker system.

Material that contains a lot of natural or synthetic $\mathrm{L}-\mathrm{R}$ information can
be astonishing when heard through a sonic-holography system. The soundstage appears to extend far beyond the backs of the speakers-indeed, the speakers almost seem to disappearand "offstage" sounds often seem to originate from places far beyond the left-right bounds of the conventional stereo soundstage.
The original Carver sonic holography process requires some effort to inake it work at iss best. Speaker positioning is extremely critical to the effect, and speaker-to-listener distances must be measured extremely carefully, and the corresponding left and right ones matched to within an inch or so of one another. The benefits of sonic holography also are restricted to only one or two listeners at a time. The effect is heard only from a highly sensitive "sweet spot," and moving just a foot or so out of it destroys the illusion.

In some of its equipment Carver now offers what it calls a Precognition Matrix. which is intended to broaden the sonic-holograph soundstage created from motion picture soundtracks. The precognition circuitry works by detecting the (normally inaudible to the ear) rise in noise-floor level when additional tracks are mixed into the stereo master. By changing the mix of left and minus-right-channel information, the apparent soundstage can be widened dynamically to follow that of the material being reproduced, allowing more listeners to benefit from the sonic holography process. Because the change in noise-floor level occurs several milliseconds before the actual

FIG. 6-CARVER'S SONIC HOLOGRAPHY process compensates for signat "muddying" that occurs during ordinary stereo reproduction by using signal cancellation lechniques.
onset of the new audio material, the processor can respond without missing a note of music or other material.

For those who want everything (or nearly everything). Carver also produces an AM/FM stereo receiver that incorporates both Sonic Holography and Dolby Pro Logic Surround, which will be discussed below.

Other two-speaker systems

There are several other single-ended systems that attempt to recreate a measure of ambience from just the information contained in the two channels of an ordinary sterco signal.
The system that seerns to have attracted the most attention of late is the SRS system developed by Hughes Aircraft and licensed by Sony for use in some of its television receivers. Basically, the process extracts the L-R ambience information and processes it through frequency, timing. and phase adjustments to simulate the way the recorded information would have been perceived by the human ear. The effect is an artificial analog of the binaural process described earlier, using loudspeakers instead of earphones. The Hughes SRS system is described in detail in the September 1989 issue of Radio-Electronics.

Most "simple" surround systems, though, are just variations-and minor ones, at that-of the $\mathrm{L}-\mathrm{R}$ matrix process. Sometimes the term "digital" gets thrown in, but the digital portion of these processes often has to do just with creating the out-ofphase $L-R$ signal, and maybe adding some time delay for increased "spaciousness."

Dolby Stereo

Although it has been in use since 1975, Dolby Stereo, one of a number of audio processes to come from the laboratories headed by Ray Dolby. first came to national cinematic attention with George Lucas' Star Wars in 1977. Anyone who's seen the fullblown version of that film will never forget the opening scenc, where the massive battle cruiser looms onto the screen, appearing-to both eye and ear-to come from behind and above the theatergoer. What an introduction to Dolby Stereo!

Movies with stereo soundtracksmost of them musicals-were not rarities prior to that. but the Dolby process added one or two things to mere lateral directionality. The first
was Dolby A noise reduction, which (as you li know if you ever heard the Star Wars soundtrack cranked way up. as it was in most theaters) gave op-tical-soundtrack sound a much greater dynamic range than it had enjoyed before. The second, and perhaps more significant from an entertainment point of view, benefit of Dolby Stereo was that it added, in a rather elegant and easy-to-achieve manner, true stereo. That is, the sound field. which had previously been zero-dimensional (monophonic) or one-dimensional (conventional stereo), now took on another dimension and gained front-to-back depth as well. The word "stereo" derives from the Greek word meaning "solld," and with Dolby Stereo, movie sound fields took on solidity.

Although there is a six-track version of Dolby Stereo, in which each soundtrack carties discrete (non-matrixed) information for a single oulput channel, the process used for most theatrical releases requires only two tracks. With the Dolby process, those two tracks can provide up to four channels of sound. Figure 7 shows how Dolby Stereo works. The left and right channels contain the usual leftand right-channel information; a movie theater without a Dolby Stereo decoder (or a home videotape viewer using just a stereo VCR) would perceive a nearly-normal left- and rightchannel soundtrack. (With only monophonic facilities, the two channels would be mixed to produce a single composite output.) With a Dolby decoder, though, two more channels of sound become available. The lirst is a front-center channel. This is a mixture of the left-and right-channel signals-a composite mono signal in effect-that fills in the audio "hole" that might be perceived by a moviegoer sitting close to the center of a wide screen.

The really interesting part of a Dolby Stereo soundtrack, though, is the fourth, surround, channel. It is encoded on the stereo tracks as "L-R." "Wait a minute!" you say. "That's the same information that you can extract from ordinary stereo for a marrix-surround rear channel system. What's the big deal?" The big deal, it turns out, is in what information is encoded in that difference signal. Matrix surround uses natural, or at least natural-sounding, ambience informa* tion. What the Dolby process uses is

DOLBISH SURROUND

Once you know how Dolby Sur: round Tiformaton is encoded on a stereo soundtrack-namely in the form of an L-R difference signal-it is easy to extract it. While surround decoders bearing the Dolby "double$\mathrm{D}^{\prime \prime} \log 0$ contain extra circutry to provide such things as bandbass filtering and Dolby-B noise-reduction decoding, you can have surround sound-using the Dolby-encoded in. formation-from your stereo VCR or other stereo source such as an overthe air or cable broadcasts of films containing surround-encoded material for about $\$ 25$-including the cost of the speaker!

The easiest method to reprocluce the $L-R$ "surround" signal. whether It contains natural ambience information or Dolby Surround programming, is simply to subtract the right-channei signal from the lett-channel one at the speaker lerminals. You can do that by connecting a speakes, which will become your rear surround speaker, between the two positive (" + ") speaker terminals as shown in the ligure. Signals common to both channels will not be reproduced (or will be reproduced at a reduced leveli), but the ditferences between the two-the L-R informalion-will. Since that is exactly what the Doiby process uses. the third speaker reproducing that signal will become the surround device.

The process is not perfect (otherwise there would be no market for the more complex and expensive de-
vices being sold as Dolby Surround decoders). BUt it will give you pretiy amazing results from good material at a rock-bottom price.
If you connect the surround speaker directly to your amplifier's usual speaker-output terminals, you should use an L -pad in the line to let you control the level. and thereby the balance, of the surround ellect sound. You don't want the eflect to be overwhelming: most of the time there should be so little of it that you're not aware its there, atthough it you were to eliminate it suddenly you would be struck by its absence as the soundfield collapsed.
Be careful when adding a third speaker to your system in that way. Putting the impedance of the extra speaker across that of the other two will change the Impedance of the entire system, and may reduce it below the minimum Impedance recommended for your amplifier. Al very low output levels that may not matter, but at higher ones it can put an unacceptable strain on the amp.

A slightly more complex way, but one reeting less of brute-force, to obtain surround sound using that meth. od would be to mix the line-level signals from a pair of your amplifiers tape outpul jacks in the same way you would combine the speaker-output ones-by using the two inner conductors of the TAPE OUT cablesand teed that signal to a separate small mono amp driving the surround speaker.

R-E
much more controlled. However, for the curious, a method for obtaining a surround effect from Dolby-encoded material without the use of a decoder is described in the box above. It's primitive, but effective.

Cinematic sound is an extremely artificial medium-even such a simple effect as the sound of an actor's footsteps as he walks from one side of a scene to the other is much more easily created on an ergincering con-

FIG. 7-THEATRICAL DOLBY STEREO encodes four channels of sound on two soundtracks. The Dolby decoder derives a center channel by summing the left and right channels, and surround information by subtracting the fight lrom the left.
sole with a couple of pan pots than on the soundstage during filming. Most of a film's soundtrack is realized in post-production-and that tightly controlled environment makes it relatively easy to put on the surround track exactly what is wanted, without having to rely on natural material.

If you listen carefully to a plain stereo playback of a Dolby Stereo soundrack, you can frequently detect the presence of the surround effectsthey appear to come from outside the speakers' soundstage, the way out-ofphase ambicnce information may. That is clearly evident in a film such as Back to the Fuhure, when the timetravelling DeLorean comes swooshing toward or away from the camera. If all four channels of sound are reproduced, you hear the car moving from front to rear, or vice-versa. In plain-vanilla stereo, though, you can plainly hear the car noises coming from the far-left and far-right-offstage. as it were.

In ereating an $\mathrm{L}-\mathrm{R}$ surround signal. the Dolby Stereo process does two things. The first is to cut off the rear-channel signal at 7 kHz . That is done for several reasons. The first has to do with eliminating signal leakage and distracting crosstalk from the surround channel. Another big reason has to do with economy. There is no need for high fidelity in a surround channel-most of the time the sound there is for "presence"-that is, you are only unconsciously aware of it. The track is meant to be unobtrusive. not to have you constantly aware of its presence. It's only if the surround channel should suddenly fail that you should become consciously aware of its presence (or absence).

That limited frequency response is the reason behind those cheap-looking. PA-type speakers you may have
noted in movie theaters equipped for Dolby Surround. It's not that the the-ater-owner is a cheapskate; simply that there is nothing on the surround track to justify the expense of a better speaker. As far as low frequencies go- the rumble of the engines of the Empire spaceship, for example-they are carried as ordinary left and right information. Since your ears cannot determine where frequencies below about 120 Hz originate, they can be reproduced from low-frequency drivers located any where. The visual content of the film will cue you as to where the sound is supposed to be coming from.
The second thing that is done to the rear-channel signal is to encode it using a modified form of Dolby B noise reduction. The modification consists of adding only five dB of processing instcad of the normal ten dB. The use of Dolby B provides a degree of noise reduction and assists in reducing front-channel signal leakage, while the low level of processing prevents the encoded surround signal from significantly altering the nature of the left- and right-channel signals heard up front:

In the decoding process, a third element is added to Dolby Stereo: time delay. A delay of between 15 and 30 ms is added to the rear-channel signal to take advantage of a phenomenon known as the Haas effect. The Haas effect causes the mind to identify the source of a sound as that from which it is first heard and to ignore the same sound arriving later at the ear. That "first arrival" effect ensures that front-channel sounds are clearly identified as originating from before the viewer, even if they also come from behind him to some extent. Dolby Stereo decoders also make use of steering logic, discussed
below, to add further directionality to the decoded soundtrack.
Before leaving the theatrical Dolby process, we should mention one called "THX." THX is a tradermark owned by George Lucas' Lucasfilm (the name has its origin in the title of Lucas' first feature-length work, a sci-ence-fiction film called THX-1/38). All it refers to is a "guaranteed minimum" quality of sound in a particular theater from an ordinary Dolby Stereo soundtrack. THX engineers check and adjust the sound-reproduction equipment in a "THX" theater to meet specific standards of performance. lt's just quality control for movie-sound reproduction. Unless you can get a THX engineer to come out to your living room. THX will do nothing for you at home.

Dolby Surround and Pro Logic

Dolby Surround is the name given to one of the two home versions of Dolby Stereo. It starts with the same two stereo soundtracks that are on the film (now on longitudinal or Hi-Fi tracks on a videocassette). And, as is done in theatrical installations, the surround channel is dematrixed, Dol-by-B decoded, and time delayed before being amplified and fed to a pair of rear speakers. Only one surround speaker is actually necessary, but two-reproducing the same surround signal-give a "fuller" effect. To derive a monophonic center channel, useful in preventing a center "hole" when the left and right speakers are widely separated, some Dolby Surround decoders mix the left- and right track information. That is not, strictly speaking, necessary, since center information appears equally on both tracks and can be heard appearing from a "phantom" speaker situated continued on page 58

KIT REPORT: HEATH'S AD-2550 SURROUND SOUND PROCESSOR

If you're looking for a fun way to upgrade your audio/video system to include Dolby Surround, Heath's AD. 2550 might be the way to do it. It might also be the perfect way to get yourself back into electronics construction if you've been letting your skilis lapse.

The processor is very easy to bulld. Although we wouldn't recommend it as a first project, anyone with even minimal kit-building experience, or anyone who has ever built a project from plans published in Radio-Electronics should have no trouble.

Most of the work involves assembling one large PC board. There's plenty of room to work, and the supplied instructions and silkscreened boards make things as simple as possible. When the board assembly Is complete, the final work involves installing it in the metal cabinet and hooking up the power transformer.

Our total assembly time was about six or seven leisurely hours. Alignment takes only a few minutes, and can be accompllshed either with or without test equipment. Did it work the first time we turned it on? If you have to ask, you've never build a Heathkit!

Surround features

When you're finished with the assembly work, you're left with a fullfeatured surround-sound processor. The AD-2550 accepts left- and rightchannel inpuls and offers a wide assortment of outputs. First, because the processor includes a 20-watt audio amplifier, dinect speaker outputs are available for connection to surround speakers. Line-level sur-

MOST OF THE ASSEMBLY work is done on a large PC board.

round-channel outputs are also offered. Line-level outputs for left Iront and right front are provided for connection to a separate 日mplifier, or to a stereo TV/monitor. A center-channel output is provided for installations where frontspeaker separation produces a sound that is too wide for the screen. It helps to keep the dialogue of on-screen actors sounding as if it's coming from the screen, not off to the side. A line-level subwoofer output feeds the low-frequency (under 70 Hz) sounds to a separate amplifier for room-rattling effects.

Three different surround modes are provided by the Heath processor. First, of course, is true Dolby Surround. "Music surround" adds synthetic surround effects to stereo audio recordings to give them more depth. A "mono enhance" mode synthesizess stereo-with-surround effects.

Front-panel controls include a power switch, three pushbuttons for choosing the appropriate surround mode, and four rotary potentioneters. First is the delay control to set

> can bring it home to your

EVERYTMING THAT'S NEEDED 10 pro-
duce professional results is included with
EVERYTHING THAT'S NEEDED to pro-
duce professional results is included whth the ktt.

FIG. 8-THE ADAPTIVE MATRIX used in the Dolby Pro Logic Surround process can provide up to 30 dB of separation between opposite or adjacent channels. That affords an extremely high degree of directionality.
between the two front ones. A few Dolby Surround processors can also output a front-and-back mix to side speakers. Finally, most processors on the market also feature a subwoofer output. That has nothing to do with the Dolby process; it's more a convenience than anything else.

Dolby Pro Logic Surround is the ultimate in Dolby Surround processing, While the original Dolby Surround process is primarily a passive one (all the equiprient does, essentially, is decode the matrixed information), Pro Logic decoders contain active circuits that provide a surmound effect as good as-if not better than-that in the best movie theater. The active addition to a Dolby Pro Logic decoder is known as steering logic.
The purpose of the steering logic circuitry in a Dolby Pro Logic decoder is to sense the direction of soundtrack dominance - that is, to determine from what direction the loudest sound on the track seems to originate-and to generate control signals that increase gain in the appropriate (left, right, center, sumpound) combination of channels to give a directional vector. Figure 8 illustrates the workings of the adaptive matrix within a Pro Logic decoder. By comparing the left and right and center and surround signal pairs, and taking the logarithms of their values (logarithms are used, in part, because human senses work in a logarithmic rather than linear fashion), a pair of
bipolar control signals is generated, which are used to adjust the gain of eight voltage-controlled amplifiers (four for each input channel). The outputs of those VCA's. together with the original left- and right-channel signals, provide a total of ten control signals. When those signals are applied to the four output channels, a total of forty summed directional components are available. Separation between any pair of channels-adjacent or opposite-is 30 dB , compared to Dolby Surround's 3 dB of adjacent separation, and 40 dB of opposite separation.
Pro Logic decoders are two-speed devices. When only onc sound source is dominant, they run in their "slow" mode. But when there are two distinct sound sources (by definition, only one can be "dominant" at a time), the Pro Logic circuitry goes into a "fast,"
time-division multiplexing mode where it gives its attention first to one source, and then to the other. It switches back and forth between the two so quickly that its efforts are unnoticed by the listener.
Dolby Pro Logic decoders include as a matter of course center-channel and subwoofer outputs. As is the case with the surround channel, the centerchannel amplifier and speaker need not have the frequency response of the equipment used for the left and right channels. High- and low frequencies will be reproduced by those systems and by the subwoofer, if one is used. With a good-quality hi-fi-soundtrack videotape, and with even a modest array of home sound equipment, you can experience a quality of cinematic sound at home that you would be hard-pressed to find in any theatrical environment.

R-E

GENERIC POWER SUPPLY
 continued from page 46

ble. If the water dries smoothly, from the edges inward, or forms fine bubbles, you're probably safe. However, if the water boils off immediately. there's trouble. It's not a terribly scientific method, but it's free. Check a second time, waiting a full minule after drying for heating recovery.

The $78 \mathrm{XX} / 78 \mathrm{MXX}$ versions are fixed-positive models. For example, a

7812 is a positive 12 -volt model that can provide at least I amp of output current-but only when the regulator drop is low enough to avoid overheating. The suffix " T " specifies a TO- 220 case, but catalogs often omit this and specify the case type elsewhere. The 79XX/79MXX versions are fixed-negative models. The LM317/LM317M models are adjusta-ble-positive, and the LM337/ LM337M are adjustable-negative. They're all very reliable, and can take considerable abuse.

The days of LED indicators and segmented displays are numbered. Now you can add an alpha-numeric LCD to your home project easily and inexpensively.

STEVEN AVRITCH

have you ever avoided a project because it required a display that could handle numbers, letters, and symbols? Have you ever given up on a project because the display had to be at least 10,20 , maybe even 40 characters long?

You can solve all of those problems by using a simple and inexpensive alpha-numeric LCD module which contains a controller chip that does most of the work for you! This article will show you how to use LCD's with a simple microcontroller- or micro-processor-based design. Note that most small LCD modules use the Hitachi HD44780 LCD controller chip (see block diagram in Fig. 1). This article will therefore be limited to a diseussion of LCD modules that usc, or are compatible with, the HD44780 controller format. Common LCD modules include those manufactured by Optrex. Epson, Hitachi, Amperex, and Densitron.

Multi-character readouts are usually constructed using individually wired, multiplexed display segments. The host microprocessor sequentially flashes the desired character on each digit of the display, one at a time. The mieroprocessor is fast enough so that the naked eye sees the display as it
should appear. That method of multiplexing the digits of a display is often used because it reduces the anount of extemal hardware required compared to non-multiplexed systems. However, multiplexing requires the microprocessor to continually update the display, and the amount of extemal wiring must be increased as additional digits are added (see Fig. 2).

For example, a 10 -digit numeric display requires approximately 100 wires and over 20 components. (A 10 digit alpha-numeric display requires even more wires.) The equivalent display (including alpha-numerics) implemented with an LCD module would require only 10 wires and 2 components: the LCD module and a potentiometer for contrast control. Using an LCD module, a designer can add a display containing up to 80 characters with as little as 10 wires, 7 of which connect the display module to the host microcontroller/processor, plus I power, I ground, and I LCD drive wire for contrast control. That's all!

The software interface between the host and the display module is just as simple as the wiring. The display modules automatically handle all refresh and multiplexing functions. The
host needs only to write the data to be displayed and a few control codes (such as display on, display off, scroll left, scroll right, etc.) to the module; the on-board LCD controller chip does the rest.

LCD modules have not been used heavily in the past because of their high costs. However, the cost of the modules has since dropped considerably, and they are now commonly found in many of the popular electronics supply houses. For example, a 32-character display (2 lines, 16 characters per line, 16×2) is available from Digi-Key for approximately $\$ 23$. Similar displays can be obtained through surplus houses for approximately \$8-\$10.

Most of the small, inexpensive LCD modules contain a Hitachi HD44780 LCD Controller chip. That means that most of LCD modules follow the same standard format, have the same 14 -pin interface, and are therefore compatible and interchangeable. The HD44780 is capable of controlling any size display up to 2 lines long and 40 characters wide with the same hardware interface. Commonly available display sizes include $16 \times 1,16 \times 2,20 \times 2,24 \times 2$, and 40×2 formats. That means that you

FIG. 1-moST SMALL LCD MODULES use the Hitachi HD44780 LCD controller chip.

Features of LCD modules

The LCD modules support a variety a display features that can accommodate just about any application. The following is a brief description of their features:

- Display on/off-allows the user to turn the display on and off from the host processor.
- Cursor on/off-user may select to display the cursor or suppress it.
- Cursor blink - the user may select a steady cursor or a blinking cursor. The character above the cursor also

FIG. 2-MULTIPLEXING REQUIRES the microprocessor to continually update the display. and the amount of external wiring must be increased as additional digits are added.
can change the size of your display by simply plugging in a larger module. No other hardware modifications are required; only the software drivers specific to the application would need to change.

The LCD modules recognize standard ASCII code for letters (upper and lower case) and numbers in addition to a variety of symbols including ?, !, \$AK. \%, and ', just to name a few. In all, the LCD module supports 192 alpha-numeric characters and 32 special symbols. The modules also allow you to customize up to 8 userdefined characters of your own. On one home project the author customized three characters that, when displayed together, formed an airplane as can be seen in the photo.

The LCD modules are dot-matrix type displays with each character being formed from a 5 -dol-wide by 7 -' dot-high block (5×7 font) or a 5 -dotwide by 10 -dot-high block (5×10 font). The font is selected by issuing a control command as discussed later in this article.

There is also a cursor line under each character. The 5×10 font is better suited for certain lower-case letters such as g, y, and p (i.e. letters with descenders that go below the line that they 're written on). Figure 3 shows examples of letters formed using the 5×7 and 5×10 dot-matrix formats for comparison. It should be noted that the 5×10 matrix font limits the display to one line regardless of whether the LCD module is a one-line or two-line display.

FIG. 3-HERE ARE SOME EXAMPLES of letters formed using the 5×7 and 5×10 dot-matrix formats.
blinks.

- Scroll leffright-scrolls the Jata on the display.
- Return home-returns the cursor to the home position (address 0) and returns the display to the original position (if it had been previously scrolled)

Software interface

The software interface between the LCD module and a processor or microcontroller is relatively simple. There are two basic types of software operations: control operations (i.e. display on/off, cursor blink/noblink. etc.) and data operations. The control operations set up the features of the display, while the data operations write the actual data to be displayed to the LCD module.

The LCD module's on-board HD44780 controller chip contains 80 bytes of display RAM and is capable of supporting up to a 40×2 display (each byte of display RAM corresponds to a digit of the display). Smaller LCD modules simply do not
display the full 80 bytes of RAM. The display RAM is organized in the following format:
LINE I:
Character position: 12345678 9... 40

RAM address 01234567 8...27(hex)

LINE 2 :
Character position: 12345678 9... 40

RAM address 4041424344454647 48...67(hex)

Smaller modules simply do not display the upper character positions associated with the upper addresses. For example, a 16×2 display uses ad. dresses 00-0F (hex) for line 1 and 40-4F (hex) for line 2.

The HD44780 also contains 64 bytes of character-generator RAM: That is used to store the character patterns of the 8 user-defined characters (8 bytes per character). Once a user-dcfined character is set up in character-generator RAM, it may be accessed just as any other regular character. NOTE: in the 5×10 matrix mode, only four user-defined characters are supporied, with each character requiring 11 bytes of character-generator RAM.

Software drivers

The host must contain two basic software drivers to support the LCD modules. the Control Write and Data Write drivers. The minimum functions that the software drivers must perform are:
Control Write:

- Sets up DB0-DB7 with the desired control code
- Sets the r/w line to logic zero
- Sets the rs line to logic zero
- Strobes the enable line

Data Write:

- Sets up DB0-DB7 with the desired characier
- Sets ruw line to logic zero
- Sets the rs line to logic one
- Strobes the enable line

The user may also read data and control signals from the HD44780. Control Read and Data Read drivers are similar to the write drivers except that the RW line is set to a logic one. Refer to Table I for a complete listing of the control codes and status flags available with the HD44780 LCD controller chip.

Subroutines for the MC68705

The following subroutines show the
LISTING 1

software drivers for data and control writes. The examples shown here are writen in Motorola 6800 -series assembler code and are targeted for the MC68705 microcontroller. These short routines can be easily translated into other assembly languages that can be used with other microcontrollers/microprocessors.

The Data Write subroutine (Listing I) displays letters and symbols. The

ASCII code of the letter/symbol to be displayed must be loaded into the Accumulator before calling the Data Write subroutine. Before the Control Write subroutine (Listing 2) can be called, the code of the control operation to be performed (from Table 1) must be loaded into the Accumulator.

Display initialization
The first operation that the software
DIGITAL VIDEO STABILIZER
ELIMINATES ALL VIDEO COPY
PROTECTIONS PROTECTIONS

Whin walehing tonist WARNING:

 noying parlodic color darkening, color chili. unmerted lines, hashing of legged edgen, This is dion paming tignals om. ondded in the widoo licse. *uch as Macromsion coppy protaction. Diginal Video Stablizer. Wee comptotety ellminater E copy prolec.tions and lamming tions and pamming yigrus and brings you cryizal claat
Fictures.

- Enfy lo ura and a unap
to install
- Statio-of-therer to tegrated cricun lechnot.
- 80
nem automalic - no noed for amy Houblewomed.|ust
- Momb
at WCP and ivi types a VCAe and TVe
- ing vides Sumost tricil. the merkes
- Ught weight (a ouncen) and Compaer ($1 \times 3.5 \times 5$)
- Useatitul Dephuce gín bos
batiery which mill ledid 1 . 2 yeme.

SCO
Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate rental movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only.
(Dealert Walcome)

ToOrder: $\$ 49.95 \mathrm{en}+54$ lor FAST UPS SHIPPWNB 1-800-445-9285 or 516-694-1240 Vhas, MMC. COD M.F: O-8 (onstery nol Incluaded) SCO ELECTRONICS INC.
Oupl ceve 5月1 W. Morich Rd. Valey Stream NY 11500 Uneonditional 30 days Money Eacm Guarantee
CIRCLE 194 ON FREE INFORMATION CARD

CABLE TV DESCRAMBLER

It's not the intent of US Cable TV inc. to defraud any pay TV operator and we will not assist any company or Individual in doing so.

must perform is the initialization of the display. Initialization inciudes clearing the display and issuing the appropriate control commands that set the display up with the desired features. The INIT subroutine (Listing 3) is a sample initialization routine for a 16×2 display. The INIT routine sets the display up for 2 line. 5×7-font format, 8 -bit interface mode, and suppressed cursor. Also, the INIT routine sets up the display to shift the cursor one position to the right on every data write.

Note: The display module requires 10 milliseconds to initialize after power is applied. The host, therefore, must wait at least 10 milliseconds before writing to the dispiay following the power-up of the module.

CG RAM initialization

The CGINIT routine (Listing 4) illustrates the operations required to set up 3 of the 8 user-defined characters. The characters defined in the

routine form an airplane when displayed together. Tabie 2 illustrates how each of the three user-definable characters are generated. Listing 5
continued on page 80 characters are generated. Listing 5
continued on page 80

LISTING 5		
Platig	FCB	\$00
	FCB	\$00
	FCB	\$00
	FCB	\$1C
	FCB	\$1F
	FCB	\$00
	FCB	\$00
	FCB	\$00
	FCB	\$10
	FCB	S0C
	FCB	\$06
	FCB	S1F
	FCB	\$1F
	FCB	S06
	FCB	SOC
	FCB	\$10
	FCB	\$18
	FCB	S1B
	PCB	S18
	FCB	S1F
	FCB	\$1F
	FCB	S00
	FCB	S00
	FCE	\$00

Instruction	RS	Rw	Der	085	Des	Ded	D83	082	D81	060	Depeription and execultion time
Clear	0	-	6	9	0	9	0	0	0	1	Clours Display Flefurms cursop to home Dosition (1 64 ms)
Home	0	0	0	0	9	0	0	0	1	X	fiotum cuncer lo horne position Patrurn fintid daplify to home position $\{40, ~ w i l)$
Hode	-	0	0	9	6	0	0	1	10		Control enometic FANH TOCren HCOEC and whether denquaty shifts on Hernes ($40 \mu \mathrm{H}$)
Dispiny ON DFF	0.	0	0	0	0	0	1	-	*	2	Controts dispery OHOFF Controks curiot ONOFF Curior bunk ON OFF ($40 \mathrm{\mu} \mu \mathrm{~s})$
Cursor or dieplay ahint	0	0	0	$0 \cdot$	\square^{3}	1	80	P4.	x	x	Silte curnor endior display menthout chenging ormplay RAM (40 n s)
Function set	0	0	0	\square	1	Dit	N	F	x	X	Sel wilertace to 4 are 8 bans Sel numbe of dypiay tones
Sat CG RAM address	0	0	©	1			Madre	(ca)			Sel adoress kor subsequant winos to characiom generation. (CO) RAM (80 ms)
Sut DO RAM sodress		3	N				- 8 10	$0)$			Sel edrene tor subswquert wites it
Aloed buay then 4 sodress	9	J.	\%				ess C	mer			Fieed ziatus of busy hag (BF) and pesemen adoress counter (1 μ a)
Write dinta to Co or DD RAM	1	9	Dala llasec	$\begin{aligned} & \text { on wr } \\ & \text { on lasi } \end{aligned}$	$\begin{aligned} & \text { tren to } 0 \\ & \text { ser } 00 \end{aligned}$	$\begin{aligned} & 00 \mathrm{cos} \\ & 20 \mathrm{~A} \end{aligned}$	A AM es add	$D O C$	destm $\text { trol } 00$	Hort mand	Whites cala lo MD4A780 (40.4s)
masó data from Ca or OD RAM	1	1	Den 00) 0 tormm			$\begin{aligned} & \text { CG R } \\ & \text { ot } 0 \text { P } \end{aligned}$		ce of d odoces	sta ICD contr		Puads dita horn HD44700 (40 上 μ)
10 - 1 i increment adaress pointer on ench subsoquent rasd write 0: Decremern address poimer on each subsequom readwrit D. = I; B-br dara-Curs minerace 0: 4-bir dera-ous inertaco											
$\begin{aligned} & 2= \text { 1: Sinh cundor with dresoley } \\ & \text { 0. Hold cursop fued } \end{aligned}$											

Hardware Hacker

Electronic Levels
Low Cost Memory
New Form of Matter
Cases and Enclosures
LaserWriter Tech Info

DON LANCASTER

Low-cost memory

SOMEONE AT LONG LAST HAS DONE something right for a change. Hacker friendly too. A giant Yea Team! and a sixpack of attaboys to all of the folks at Dallas Semiconductor, a manufacturer of innovative new integrated circuits.

Dallas has set up a free 24 -hour direct-order line with no hassles and no minimums. If you want one or two of their chips at $3: 42$ in the morning, just whip out your VISA card and give them a call. For next day delivery.

What's really sad is that virtuaily all of those other "good guy" innovative chip manufacturers invariably use by far the most Neanderthal and the most hacker vicious of the oldline distribution channels.

So here and now, I issue an outright challenge to all the rest of the "good guys"-Maxim, Sprague, Linear Technology, Samsung, Mitsubishi (who has far and away the most mesmerizingly awful reps and distributors in the industry, bar none), Signetics, Reticon, SGS, Statek, Teltone, Rohm, Intersil, Sony, Siemens, Philips, et. al.

For your own good, please, please, find out why Dallas is laughing all the way to the bank. And please set up your own direct order lines that do not go out of their way to kick sand in the collective faces of your most promising future customers. Your present distributors are your worst enemy.

As usual, please observe that all of our referenced sources do appear in either the upcoming Cases and Enclosures resource sidebar or in the Names and Numbers box. Please do check out the sidebars
before using our free help line. And please do make all your product and your literature requests to anyone listed in elther sidebar specific, rather than general.
We return you now to our column already in progress....

LaserWriter information

It appears that Apple Computer has gone far out of their way to prevent you from ever getting any useful parts or technical service information on their LaserWriter printers. Outside of the limited "white book" LaserWriter Reference on all of those connections and the commands (in stock here at Synergetics), virtually nothing at all is available from them on their printers. Such stupidity ends up monumentally short-sighted.

Fortunately, Hewlett-Packard is as hacker-friendly as Apple is hackervicious. The Canon CX and SX engines used by both companies in their printers are nearly identical. Over 95 percent of the mechanical parts are fully Interchangeable. And HP, like Dallas Semiconductor, also has a free VISA order line with overnight express delivery.

HP has a pair of outstanding service and repair manuals that are di-

NEED HELP?

Phone or write your Hardware Hacker questions to:

Don Lancaster
Synergetics
Box 809-RE
Thatcher, AZ, 85552
(602) 428-4073
rectly applicable to the Apple printers. Their manual \#33440-90920 is for the older CX engine as used on the Laserthriter and LaserWrifer Plus. Their manual \#33440-90904 is for the newer $S X$ engine that is used on the LaserWriter NT and LaserWriter NTX.

Unfortunately, HP sells only the replacement modules, and rarely goes down to the individual component parts level. Thus, you can get a fuser assembly from them, but not a fuser roller. One source l've found useful for any and all LaserWriter parts on any level is Don Thompson, who also stocks detailed repair literature, low-cost rebuilds, toner supplies, and the handy and useful repair tools. One additional source for a LaserWriter schematic is Bomarc Services.

As we have seen before, you can easily refill your own SX or CX toner cartridges in two minutes for $\$ 7.50$. The job Is much simpler than properly packaging your cartridge for shipping to a commercial refilling service.

Besides Don Thompson, another major source of refilling supplies that I personally use is Arlin Shepard of Lazer Products. Arlin also now offers "infinite life" recoated $S X$ drums. One I'm now using is on its 14th refill.

From what I have been able to determine, much of the rest of the toner refilling industry is an outright zoo. We have people selling you shoe polish and calling it drum recoating, others gold plating things that do not need gold plating, and yet others who are making useless
"gapping" adjustments that try and compensate for the shoddy quality of the toner.

For a good glimpse into the entire toner refilling industry, check out the highly interesting and informative Recharger trade journal. Full details on the toner cartridge reloading appear in previous columns (Radio-Electronics, April 1989) and in my Handware Hacker//book-on-demand published reprints.

Low-cost memory

In case you have not met them before, Dallas Semiconductor has a mind-boggling array of cheap and innovative new circuits that cry out for hacker use. They are very heavy into such things as clocks, non-volatile memory, supervisory watchdogs, FCC legal "plug-and-go" telephone modules, and the shortrange RF remote controls.

One typical example is their DS2222 EconoRAM, shown in Fig. 1. This is a 256 -bit nanopower memory that is easily made non-volatile with a tiny backup battery. It is intended for intelligent credit cards, publictransit tickets, security-access con-

DON LANCASTER

Hardware Hacker Reprints II	24.50
A at The Gun Reprints I or II	24.50
CMOS Coohbook	18.50
TT. Cookbook	16.50
Active Fitter Cookbook	15.50
Micro Cookbook vel I or II	. 16.50
Enhancing your Apple I or II	17.50
Applowfter Cookboak	19.50
Appie Assembly Cookbook	21.50
Incredible Secret Money Mechin	10.50
LaserWiter Reterence (Applo)	19.50
Posiscript Cookbook (Adobe)	16.50
PontScripi Ret, Man. (Adobe)	22.50
PosiScripl Prog. Destgn (Adobe)	22.50
Feal World Powtscript (Roth)	22.50
UPLOCKED SOFTWARE	
LaserWriter Secrets (\%oMec/PC)	29.50
PoniScript Show thell	39.50
Intro to Poitscript VITS Video	39.50
PowtScript Beginner Stut	39.50
PostScripl Perspactive Drmw	39.50
PostiScripl Technical illustraliont	39.50
PostScripl Work In Progress	39.50
PotiScript 日BS stum	19.50
Abtolute Pesel llo a Mc	19.50
AppleWriterfaserwriler Utilltios	49.50
Enhance I Or ll Companion Di*k	19.50
AppieWriter C8 or Assy CB Disk	24.50

FREE VOICE HELPLINE VISAMC

SYNERGETICS

Box 809-RE
Thatcher, AZ 85552 (602) 428-4073

CIRCLE 83 ON FREE INFORMATION CARD

FIG. 1-THEECÖNORAM is a micropower memory of 2 S 6 bits. These can cost less than quarter each in quantity. Amazingly, all addressing, data transters, and all read/write control are done through a single very busy pint
trol, trade-show customer identification, long-term data acquisition, and user ID keys. Or anywhere else you want to cheaply store a few bits of information that has to be nanopower, compact, and highly portable.
The cost is under a quarter in large enough quantities. Supply voltage is between 1.2 and 4 volts DC. Standby operating current is a mere 100 nanoamperes. Less than one milliampere is needed for a read or write operation. A typical small coin cell is good for 100 million transactions over several years of operation.

What boggles the mind is that there are only three pins on the DS-2222. Power, ground, and a single pin that, believe it or not, performs all of the addressing, data transfer, and control of reading and writing.

You just about have to use a host microprocessor or personal computer to read or write to the chip, since the process is so involved. Here's how it usually works:

To read or write any one bit, all bits must get read or written. Figure 2 shows details. Your host controller provides a high output and then issues a string of 264 pulses. The tim-
ing can be any interval longer than 60 microseconds per pulse.

Each pulse event begins when the output drops from supply to ground. When writing, a logic one must last between 1 and 15 microseconds. A logic zero must last at least 60 microseconds. And so, the length of your write pulse determines whether you enter a one or a zero.

When reading, you have your host hold the output low for between 1 and 15 microseconds. The EconoRAM should respond by remaining low for another 15 microseconds if a zero is stored, and by immediately going high if a one is stored. Thus, to read, bring the output low for 15 microseconds. Wait 5 microseconds. Then sense the one or zero.

The first 8 bits in your sequence are called the command word. The first five are all ones to write, or all zeros to read. That is followed by a pair of zero bits which allow a later memory expansion. The eighth header bit is always a one.
The remaining 256 bits are your data, arranged in a sequentially addressed order, which is much like how a shift register would work. To change a single bit, you first read all of the bits, store them in host memory, and then rewrite all of the bits, changing what you want on the fly.

Obviously, this RAM is best suited for long-term storage applications only occasionally read from or written to. A 5 K pull-up resistor is recommended when writing or reading. The output pin is TTL compatible.
Now for the tricky part. To first initialize your EconoRAM, you send it 264 write zero states. That automatically resets the internal address counter. After that you send a new sequence to do whatever reading or writing you care to. Remember that you must go completely through a sequence each and every time or the EconoRAM will get confused.
four EconoRAM's are easily used together for a full 1 K that should be enough for a complete name, address, and account number. All you do is change the address bits in your command string through $00,01,10$, or T . As many as 32 bits could also get permanently factory written in for a positive and genuinely nonvolatile message header.

Let me know what new hacker uses you might come up with using this innovative new approach to small memory needs.

Cases and enclosures

For this month's resource sidebar, I thought we'd round up some lowcost products and materials that let you design your own electronic cases and enclosures.

Obviously, if you just need a plain old box, your local Radio Shack has several bargain priced ones in stock, as does Mouser Electronics, as well as nearly all of our other fine Radio-Electronics surplus advertisers. The trick is to find something beyond a plain-jane box that looks sharp, makes a clear statement you can relate to, and isn't outrageously expensive.

Let's briefly run down the major case and enclosure manufacturers: Bud, of course, who is pricey, very old line and uninspired; Vero having a foreign look about them; Hammond with a good selection of ABS minicases; Polycase who feature the wall-mounted and plug-in stuff; PacTec with an incredible variety of sloping small consoles; Keystone for built-in battery compartments and standofis; Serco for some fancier, highly styled boxes; and Vector who are both low cost and look it.

Want to wrap your own instead? Figure 3 shows you three of my own favorite home-brew packages from way back when. While most of the Zero Manufacturing cases are ludicrously expensive, they also offer a line of plain old deep-drawn aluminum boxes (Fig. 3, top) with rounded corners in zillions of sizes that are reasonably priced. These anodize beautifully, and many models have lids which exactly provide an outside or an inside fit. And the photographic dialplate materials from either Metalphoto or Fotofoil can integrate beautifully with these cases.

For dozens of examples of these, check into the back issues of Popular Electronics and Radio-Electronics in the 1965-1975 time frame.
Vinyl clad materials are used by all the big folks. Getting them in small quantities can be a real hassle. Instead, you simply go on down to your local Yellow Front or an equivalent yuppy pseudo-surplus store,

FIG. 2-THE ECONORAM GETS INTERROGATEO by use of 264 sequential timing pulses. Once started, the sequence must get completed In its entirety. See the OS2222 data sheet for additional detalls.

FIG. 3-HOMEBREW CASES FROM the "golden age" of hardware hacking. All of these are easily bulit. yel can produce oulstanding protessional results.
buy some fake Naugahyde by the yard, and glue it onto plain old aluminum or steel. The "clamshell" de-
sign (Fig. 3, middle) is easy to do. You can simply sand the bottom half to get a satin finish, and glue vinyl
onto the upper half to get a professional final result.

The wooden rail ploy (Fig. 3, bottom) is both easy to hack and looks great. Just get yourself some exotic wood from EDICO or Constantine (Cocobolo or Wenge are fine choices), mill some slots in it with a hobby motor tool, slide in a bent
metal frame, and you are home free.
l've found a local blacksmith or sheet-metal shop to be real handy at times, so you'll want to find a good one of these on your own. Better yet, see if you can't find a horse trailer or hitch works. They have the machinery to properly cut and bend the heavier stuff without costing an

CASE AND PACKAGING RESOURCES

Appliance	Keystone Electronics Corp
1110 Jorie Bivds, CS 9019	31107 20th Road
Oak Brook, IL 60522	Asloria, NY 11105
(708) 990-3484	(718) $956-890$
CIRCIE 225 ON FRE INFORMATION CARD	CIRCIE 225 ON FREE INFORMAT

CIRCLE 225 ON FREE INFORMATION CARD

Coburn

1650 Corporate Road West
Lakewood, NJ 08701
(201) 367-5511

CIRCLE 226 ON FREE INFORMATION CARD

Constantine

2050 Eastchester Road
Bronx, NY 10461
(212) 792-1600

GRCLE 227 ON FREE INFORMATION CARD
Donjer Products Co
llene Court Building 8
Belle Mead, NJ 08502
(800) 336-6537

ORCIE 228 ON FREE INFORMATION CARO
EDLCO
PO Box 5373
Asheville, NC 28813
(704) 255-8765

CIRCLI 229 ON FREE INFORMATION CARD
Electronic Component News
1 Chilton Way
Radnor, PA 19089
(215) 964-4345

CRCLE 230 ON FREE INFORMATION CARD

Electronlc Packagling

1350 East Touhy Avenue
Des Plaines. IL 60018
(708) $635-8800$

CIRCLE 231 ON FREE INFORMATSON CARD

Fomeboards

2211 North Elston
Chicago, IL 60614
(312) 278-9200

CIRCLE 232 ON FREE INFORMAIION CARD

Fotofoll Miller Dial

4400 North Temple City Blvd
El Monte, CA 91734
(818) 444-4555

CIRCLE 233 ON FREE INFORMATION CARD

Hammond

1690 Walden Avenue
Buffalo, NY 14225
(716) 894-5710

CIRCLE 234 ON FREE INFORMATION CARD

Keystone Electronics Corp
Ant road
(718) 956-8900

CIRCLE 235 ON FREE INFORMAIION CARD
Metalphoto
18531 South Miles Road
Cleveland, OH 44128
(26) 475-0555

CIRCLE 236 ON FREE INFORMATION CARD
Mouser Electronics
11433 Woodside Avenue
Santee, CA 92071
(800) 346-6873

CIRCLE 237 ON FREE INFORMATION CARD

PacTec

Enterprise \& Executive Avenues
Philadelphia. PA 19153
(215) 365-8400

CIRCLE 238 ON FREE INFORMAIION CARD

Polycase

4726 Superior Avenue
Cleveland, Ohio 44103
(216) 391-0444

CIRCIE 239 ON FREE INFORMATION CARD
Red Spot
PO Box 418
Evansville, iN 47703
(812) 428-9100

GRCLE 240 ON FREE INFORMAIION CARD
Serco
612 Commercial Avenue
Covina, CA 91723
(818) 331-0517

CRRCIE 241 ON FREE INFORMATION CARD

Vector Electronlc Co

12460 Gladstone Avenue
Sylmar, CA 91342
(818) 365-9661

CIRCLE 242 ON FREE INFORMATION CARD

Vero

1000 Sherman Avenue
Hamden. CT 06514
(203) $288-8001$

CIRCLE 243 ON FREE INFORMATION CARD

Zero Halliburton

PO Box 3339
Pacoima, CA 91333
(818) 897-7777
arm and a leg. And there's usually enough scrap on the floor under the shear.

Four interesting package support outfits are the Fomeboards people which do stock all sorts of beautiful prototyping sheet materials; Coburn who is heavy into unusual finishes such as prismatics, glow-in-the-darks, diffraction gratings, foils, etc; instant dust-on flock materials from Donjer, and the Ultra-Suede from Red Spot, a textured urethane finish having a soft fuzzy suede or smooth leather touch.

All the enclosure and packaging people advertise in most of the free electronics trade journals. Electronic Component News seems about the best for cases and such. Two other trade journals with useful fit and finish ideas in them include Electronic Packaging and Appliance.

Electronic inclinometers

The folks at Wedge Innovations are now retailing intelligent electronic levels that display your choice of degrees, pitch, slope percent, level \& plumb, autocalibration, and even a simulated bubble. The sug. gested list price is under $\$ 80$. Related electronic protractors are being offered by Lucas Sensing Systems. I just thought we might take a quick look at some of the principles of electronic level sensing. You can easily build your own level sensor for under $\$ 4$.

In general, there are two popular ways of telling which way is up. One quite expensive method is the vertical gyro. That is simply a gyroscope that is spun up while level and stays that way when the world around it moves. Two surplus sources of vertical gyros include fair Radio Sales and the folks at C\&H Sales.

A much simpler method is the inclinometer. As Fig. 4 shows us, an inclinometer can be as simple as a plumb bob and a protractor. Your gravity-sensing plumb bob usually points straight down. As the protractor is rotated, its slope angle can be read.

There have been several older attempts at getting an electrical output of an inclinometer. Obviously, you can simply wipe a potentiometer, but stiction, wear, and hysteresis can end up as problems. Other early schemes used mercury, but

Bomarc Services

Box 113
Casper, WY 82602
(307) 237.3361

CIRCLE 245 ON FREE INFORMATION CARD

C : H Sales

2716 East Colorado Blva
Pasadena. CA 91107
(213) 681-4925

CIRCLE 246 ON FREE INFORMATION CARD

Dallas Semiconduclor

4350 Beltwood Parkway South
Dallas, TX 75244
(214) 450-0400

ORCIE 24 O ON FREE INFORMAIION CARD

Don Diers

4276 North 50th Street
Milwaukee. WI 53216
CIRCLI 248 ON PREE INFORMATION CARD

Fair Radio Sales

1016 East Eureka Street
Lima, OH 45802
(419) $227-6573$

CIRCLE 249 ON FREE INFORMATION CARD

Genie

401 North Washington Street
Rockville, MD 20850
(800) 638.9636

CIRCLE 250 ON FREF INFORMAIION CARD

Hamlin

612 East Lake Street
Lake Mills, WI 53551
(414) 648.5244

CIRCIE $25 I$ ON FREE INFORMATION CARD

Hewlett-Packard

PO Box 10161
Palo Alto, CA 94303
(415) 857-1501

CIRCLE 252 ON FREE INFORMAIION CARD

Hoechst Celanese

26 Main Street
Chatham, NJJ 07928
(800) 235-2637

GRCLE 253 ON FIRE INFORMITION CARD
that's a hazardous element that's both poisonous and rather low in impedance.

Figure 5 shows you another early attempt at an electronic in. clinometer. This one is known as an electrolytic sensor. You place three probes in a conductive liquid in a sausage-shaped enclosure. As the sensor tilts from level, the deeper probe's resistance drops, while the shallow one will increase. A simple op-amp bridge circuit can convert the differential resistance into an

NAMES AND NUMBERS

Science

1333 H Streel NW
Washington, DC 20005
(202) 326-6400

CIRCLE 263 ON FREE INFORMATION CARD

Sharp

Sharp Plaza

Mahwah, NJJ 07430
(201) 529.8757

CIRCLE 264 ON FIRE INFORMATION CARD

Spectron

595 Oid Willets Path
Hauppauge, NY 11788
(516) 582-5671

CIRCLE 265 ON FREE INFORMAIION CARD

STANO Components

PO Box 6274
San Bemardino, CA 92412
(714) 882-5789

CIRCIE 266 ON FREE INFORMAIION CARD

Synergetics

Box 809
Thatcher, AZ 85552
(602) 428-4073

GRCLE 267 ON FREE INFORMAIION CARD

Texas instruments
PO Box 1443
Houston, TX 77001
(800) $232 \cdot 3200$
CIRCLE 268 ON FREE INFORMAIION CARD

Don Thompson

23072 Lake Center Dr 100
El Toro, CA 92630
(714) $855-3838$

CIRCLE 269 ON FREE INFORMAION CARD

Wedge Innovations

532 Mercury Orive
Sunnyvale, CA 94086
(800) 762 -7853

CIRCLE 270 ON FREF INFORMATION CARD
size and shape of a Magician's fake silver dollar. The rear of the enclosure is a grounded metal plate. The front consists of a pair of but-terfly-shaped capacitor plates. The case gets filled exactly halfway with a magic liquid that is an inert insulator, has a high dielectric constant, a medium viscosity, is nonwelting, non-corrosive, and has a very high vapor pressure. Propylene is one possible choice.

After filling, your case is sealed. When level, each of those butterfly

FIG. 4-THIS SIMPLEINCLINOMETER can be created by using nothing but a plumb bob and a protractor. You sight along the base of the protractor base and then read the angle.

FIG. 5-AN ELECTROLYTIC LEVEL is one older electronic inclinometer. As the device tilts, the brkge resistance between the sensing pins will change. Bromine is one possible liquid.

FIG. 6-CAPACITIVE LEVEL SENSOR is the one most often used today for electronic levels and incilinometers. As the device tilts, the high dielectric constant of the liquid will change the differential capacitance on the plates.
plates will be immersed just as deep in the dielectric liquid. As the sensor tilts, one plate goes deeper and the other will become shallower, thus changing the capacitance. The
higher the dielectric constant of the liquid compared to air, the more profound the capacitance change.

To sense, you let each wing of the butterfly set your pulse width of a monostable built out of a pair of 555 timers or one single 556 and measure the time difference between the two to determine the angle.
To get fancier, place a pair of the sensors back-to-back and sharing a common ground. That gives you two big advantages: First, your sensed capacitance change is now doubled, which should give you more accuracy. Better yet, your cross axis sensitivity should drop dramatically. That will happen because an unwanted fonward or reverse till increases the depth on one side and decreases it on the other.

The shape of the plates determines the linearity of the capacitance versus the slope angle. Sometimes, you may like to purposely change the plate shape to get a non-linear response. One use might be to automatically calculate compound miter cut depth on a table saw.

It seems to me that you could easily make up a capacitance sensor using nothing but a pair of printed circuit boards, a spacer and a large O-ring. The bottom board would form the ground plane. The spacer would have a hole in it somewhat larger than the O -ring and would act as a compression stop, setting a fixed width. And the top one would have the butterfly pair on it.

Er, on second thought, why don't you tell me? For this month's contest, either (A) show to me an eminently hackable design for the capacitance Inclinometer, or (B) dream up a new use for an electronic angle measuring device. There will be all the usual incredible Secret Money Machine book prizes, with an all-expense-paid (FOB Thatcher, AZ) tinaja quest for two going for the best entry of all.

New tech literature

A brand new form of matter known as an aerogel got written up in the February 16th, 1990 issue of Science, page 807. Aerogels are rigid inorganic sollds that have roughly the density of air and look like so much solidified smoke. They transmit light but block heat, electricity, and sound.

You can make aerogels from mine tailings dumps. Important early uses are expected to be brand new types of superinsulation and for the live capture of meteors. Neat stuff.

The new Data books for this month include the Data Communications Handbook from National, a Memory Data Book from Sharp, and a Discrete Semiconductor Condensed Catalog from Philips.
Free samples of their new 75ALS176 differential bus transceivers as well as their new Widebus family chips are available from Texas Instruments. The folks at R\&D Electronics have an interesting new surplus flyer which includes cheap ultrasonic motion detectors and lots of assorted hacker project cases. A wide selection of new and used antique radio vacuum tubes is available through Don Diers. And, rebuilt military infrared viewers are available from Stano Components.

One of the more popular CAD/ CAM circuit-analysis programs for the high-end engineering workstations goes by the name of SPICE. For this month's free new software, nearly all of those integrated-circuits houses are crawling all over themselves to see who can get their free SPICE macromodule simulation disks out there firstest and fastest. Early entries include Linear Technology, PMI, and Motorola.

The free Linear Technology disk includes a simulation and macromodel of their ultra-low-noise opamp we looked at last month. Additional info on SPICE often shows up in the free engineering design trade journals, such as MicroCAD News.

A free Designing With Plastics; The Fundamentals booklet is obtainable from Hoechst Celanese.
Turning to my own products, 1 am now self publishing nearly a dozen titles using my new book-on-demand PostScript technology. Four of them that you might find interesting are the Hardware Hacker II reprints, my Ask The Guru volumes I and II, and my brand new LaserWriter Secrets book-disk combo.

I've also started up a major new PostScript and desktop publishing BBS on Genie. Our goal is to have a thousand free downloads very soon. Finally, l've got a new and free mailer for you that includes dozens of insider hardware hacking secret sources. Write or call for a copy. R-E

P $\times 0-1000$ WITH ROTARY-SWITCH programming and a diode matrix.

PX0-1000 FREQUENCY OIVIOER with DiP. switch programming.

1×-2 iNCHES
BUILD A GENERIC POWER SUPPLY using this PC board.

Do You Know the ABC's of Camcorders?

¢Emersanق

286 AT COMPUTER

 WITH VGA MONITOR AND SOFTWARE
- 100\% IPM companble

- 80286 microprociessor [operates at 12 M Hz]. - One 3-1/2 144 MB liopoy trive
 - 40 ME hard drive IIDE puard diac tival.
- 1 MB RAM on motherboard *xpandabie 104 MB. - 14" VGA. 11 dot pitch tugh resolution color montor. 256 colors - VGA color cor.
- Four 18-bit expansion siots citen.
- Two AS232 serial ports - AT compentile.
- One paratlel porl. - One mouse porl. - Orne har height crive arpoes
- Ond ral heidi dive eplerty encloeed.
- sozt 7 mitic co processor sochul
- AT-stile 101 heyboard . Zero waut stata
- 180 watt switchabie pow supply-

- 120 Day On-Site Servicing Warranly'
- Faclory Mowl Factory Peritect Softwart includes
- MS-OOS 3.31. - Turbo pascai E.0.
- Borland Ouetro. - GW BASIC.
- PFS Protessional Wite - Emerson Menu Tutonal Proprim. • Chack Frow

Due lo a special ar rangement. We were abte to obtain a turge inventory of thene 306 comput ors As a tesult. we can now offer them to you al HUGE savines!
$\$ 1499^{92}$

Mem Pho. B-2022.139964 Insured Shyp/Hand: $\$ 40.00$

FOR FASTEST SERVICE CALL TOLL FREE 1-800-729-9000

DAMARX INTERMATIOMAL NIC
 cultombr sarwbe. 812504 4040
Please rush ma: __ Emerson Comouter(B) $\$ \$ 149999$ each, plus $\$ 4000$ sh eech. Item No.B-2022-139964
MH fes add 6\% saleat tar.

Nome

Alown -

Calimiop Conllor
Exp Onn
Stomare
OELIVERY TO 48 U.S. STATES ONLY

Drawing BOARD

ROBERT GROSSBLATT,
CIRCUITS EDITOR

Finally, a video signal!

ONCE UPON A TIME, YOU COULD GET into electronics without having to spend a lot of money. A pair of pliers, some wire, a busted radio, and a soldering iron, and bingo!three days later you'd have a variable interossiter (and who remembers what that was?). Well, unfor tunately, things change. Variable interrositers went the way of tubes and Metaluna is as far in the past as it is in the future. A real interest in electronics today means having to dig deeper into your pocket.

Even though the video circuits we've been working on together are only simple ones to demonstrate basic ideas, you really need more than a multimeter and power supply to learn from it. There's often just no way to get by without an oscilloscope. It's particularly valuable when you're doing video stuff because, when something doesn't work properly the first time, you can look directly at the waveform and immediately see where you've got a problem.

Now, I know that "inexpensive" is a relative term, but there are scopes advertised in R/E that can be picked up for under $\$ 300$. You may be limited in bandwidth and short some of the bells and whistles found on more expensive models but, unless you're doing some gee-whiz rocketscientist type stuff, a scope with a equate for a great many applica-tions-including video.
l've made a point of illustrating things step by step so far, but drawings can show only so much-and they can show you only what things look like if everything is working

OK. Since we all know that the chances of that happening first shot out of the box are about as good as finding intelligent life on Pluto, the drawings won't be representative of the waveforms being produced on your breadboard. And, if that isn't enough, not having a scope to start with means you don't have any way to tell how close your circuit is to the drawing in the first place. The classic chicken and egg problem-but one that's easily solved by getting a scope.

So where were we?

Believe it or not we're almost finished with our video circuitry. I'm the first one to admit that it's grown to occupy lots of real estate on the breadboard. If you find that upsetting, remember that in the bad old days before IC's, sync generators like the one we're building took up a lot more room, and cost a whole lot more than a handful of IC's.

There are IC's available that can replace most of the hardware we've been assembling. However, as with most speciai-purpose IC's, the price you pay for using one dedicated IC in place of some MSI stuff is a loss of circuit flexibility.

Since we're designing the timing generators and one-shots, we can set the pulse widths, delays, and scan frequencies to be anything we want. Admittedly, we're after NTSC, but it wouldn't take a lot of modification to generate PAL, EGA, VGA, or any other type of video we want. Also, building a sync generator can show you a lot more than just how video works-it can also show you how to make video not work.

That isn't as screwy as it sounds, -since having video not work is exact ly what happens when the friendly folks at your local cable company scramble a channel, or when the latest videotape is copy protected in some way. I'm not saying that the circuit we're building will solve those things, but it will help you understand what's going on. And that's the first step to coming up with a solution. More on this intriguing subject later-now it's time to put the finishing touches on the hardware.

Making video

Everything we've done so far has been aimed at generating the two sync pulses that are being produced at the outputs of the 4528. Both the horizontal and vertical pulses are needed to control the deflection circuitry in the TV, but they have to be combined into a composite signal in order to be used to make NTSCcompatible video. And we have to make provisions in the circuitry to be able to add some picture information to the signal, as well.
Even though video is usually thought of as an analog signal, the sync component is essentially digital. After all, it's really nothing more than either high or low. So there are several ways we can combine the separate sync signals, such as resistors and diodes in a home-made Mickey Mouse gate arrangement, standard gates, and others. The choice is really yours.

Even though both of our sync signals are being derived from the master clock, they're being generated by separate circuitry using the two
halves of a 4528 (Radio-Electronics, May 1990). And since we're producing a vertical sync pulse that's three horizontal lines long, the horizontal sync generator is going to keep producing pulses even during the time that the vertical sync pulse is being generated.

In order to avoid potential problems, we can prevent that from happening by putting a low signal on the clear inputs (pins 3 and 13) of the 4528. That prevents the inverted outputs (pins 7 and 9) from going low. (Remember that the sync pulses are active low.)

The simple way to make sure that only one type of sync pulse is generated at any one lime is to modify the connections made to the 4528 as shown in Fig. 1. By gating the vertical sync generator with horizontal sync and the horizontal sync generator with vertical sync, there's no possibility of signal conflict. During the period that vertical sync is being produced, the horizontal sync generator is disabled. There's really no

FIG. 1
reason for us to do the same thing to the vertical sync but it can't hurt anything, so we might as well. If you have a scope, you can try it both ways and see how it works.

Since we've eliminated the possibility of having two different sync signals show up at the same lime, we can safely produce a composife sync signal. For reasons you'll see in just a second, I like to use gates. The requirements aren't very strict since

FIG. 2

FIG. 3
we've made sure that both signals can't be low at the same time.
We want a low to be produced only when either of the sync signals go low-the rest of the time we want a high. You would think we can use a simple ano gate but, as it turns out, it's easier to first produce an inverted version of sync. That's because the inactive sync level (5 -volts) has to be at 0 IRE, or about 0.3 -volts DC, and the easiest way to translate levels is with a bunch of resistors and a transistor. And, the transistor will invert the signals applied to the base (since it operates as a switch), so we're better off feeding it with an inverted version of sync.
By the way, there's no reason why you can't use the non-inverting outputs of the 4528 and feed those into an AnD gate to combine them. I used the inverting outputs because I prefer to have NAND gates on the board. You never know what you'll be adding to the circuit, and inverting gates are more useful.
Even though Fig. 2 uses a 4093 to combine the sync signals, you can use a 4011, or any other plain Nand gate. The 4093, however, is a Schmitt-trigger part and will produce nice, crisp pulses, even if there's a bit of noise at the inputs. Since noise is always a potential problem on solderless breadboards, it's better to be safe than sorry.

All that's left for us to do is design a circuit to translate the digital signals to NTSC standard. Remember that right now our circuit is making a 5 -volt swing, and that is slightly beyond the NTSC-standard 1-volt
range...to put it mildly.
The circuit shown in Fig. 3 will take the composite sync at the output of the 4093 and cut it down to NTSC levels. You can use the trimmer to fine tune the voltage level at the output. Just remember that the high (inactive) part of the signal should be at 0.3 -volts DC to meet the NTSC specs.
Now that we're producing a signal that can be fed into any video input, we can start to play around with it. Try putting video on the screen and seeing what can be done to scramble it.

When we finish this off next month, you'll have a really good idea of how to look at broadcast video. In the meantime, try to get your hands on a scope (if you don't have one already), and take a look at what's fed into the back of your TV set. By the way, most scrambling methods aren't really that complicated, and as soon as you see what's been done, you can figure out what you have to do to fix it. Now that really sounds terrific.
 OF THE 1990'S
IF you are abie to work with common small hand tooks. and ara familiar with basic electroncs fl a. able 10 use roltmeter, understand DC elactronics). IF you possess zverage mechanical ability, and have a VCA on wilch to practice and learn. . . then we can teach YOU VCR maintenance and repaif
FACT: Up 10 90\% of ALL YCR malfunctions are due to simple MECHANICAL OI ELECTRO-MECHANICAL breakdowns!
FACT. own 77 million VCRs in use today nationwore! Average VCR needs service of repair every 12 to 18 months!
Viejo's 400 PAGE TRAINING MANUAL (over 500 photos and illustrations) and AWARD-WINNING vIDED TRANING TAPE reveals the SECFETS of VCR maintenance and repair-"real wordd" information that is NOT available elsewhere!
Also thcludes ail the info youll need reparding the BUSINESS-SIDE of running a successful service ODerattonl

FAEE NFORMATION
CALL TOLL-FREE 1-800-537-0509
Or wefle to: Vielo Publications lac. 3540 Wilshire BL. STE. 310 Los Angeles, CA 90010 Dept RE
CIRCLE 181 ON FREE INFORMATION CARD

Audio UPDATE

LARRY KLEIN,
Audio Editor

Receivers vs. separate components

IN A SENSE, THE RECEIVER IS THE COMPOnent that separates audiophiles from "mere" music listeners. (Or, if you will, the men from the boys.) Music listeners own receivers; audiophiles don't. At one time, the decision to go for separate components (tuner, preamp, and power amplifier) instead of an all-in-one receiver was a rational choice, but time and technology have shifted the parameters of the ballgame somewhat. So for readers shopping for an amplifier and tuner either to upgrade some older equipment or as a first-time buy, here are some historical notes and pros and cons to be used in making the receivervs. separates decision.

Audio evolution

When hi-fi left the labs and broadcast studios and went public in the early 1950's, the early audiophile could choose dozens of tuners and numerous amplifiers in various configurations. Some power amplifiers had "remote" preampllfiers attached via a powering cable; others were available as integrated amplifiers or as separate power amplifiers with output powers ranging from 8 to 22 watts. However, all-in-one receivers were very rare, possibly reflecting an effort to differentiate the early hi-fi components from the various large, multi-tube radio chassis that were also avallable for do-ityourselfers.

By the time stereo records appeared in late 1958, receivers were an established alternative format whose single chassis was easier to install and cheaper to manufacture,

FIG. 1-INTEGRATED CIRCUITS give you a lot more watts for your dollar.
and eliminated the tangle of unreliable interconnecting cables. However, If you wanted appreciable power from both of your stereo channels, the receiver had a problem. Remember that all equipment in those days used tubes, and power-output tubes required output transformers. Wide-range, lowdistortion output transformers were necessarily large and heavy-as were the power transformers supplying the filaments and the plate currents of the four output tubes. This meant that stereo receivers tended to be large, hot, and heavy. And if you wanted powers higher than about 20 watts, they got significantly larger, hotter, and heavier. I remember one moderately highpowered and expensive Fisher receiver that struck me as an effective advertisement for separate compo-nents-it took an incredibly strong man to lift it!

Transistorization.

Aside from the other benefits wrought by the transistorization of audio, it brought high-power receivers into the realm of practicality. The low output impedance of the power transistors eliminated the need for the two output transformers. That in turn not only enabled the designers to reduce the cost, weight, and size of their products but also served to improve amplifier bandwidth and stability. The amplifier and tone control stages also benefitted from the low impedance of the solid-state circuitry; the hum and RFI problems that had always plagued high-gain tube circuits were substantially reduced. The net result of all those advantages -plus the cost reduction that resulted from the use of a single chassis and power supply-was that the receiver shortly became the best-selling electronic audio component.

The elements of choice

Given all the factors discussed above, why haven't separate power amplifiers, tuners, and preamplifiers vanished from the marketplace? There are several nonrational reasons why otherwise rational audiophiles (myself included) prefer separates.

A few words about the irrational elements first. It didn't take years on a psychoanalyst's couch for me to realize that there's some snobbery at work in at least two areas of my buying behavior. For example, l've always used the inadequate performance and poor reliability of U.S. continued on page 79

COMPUTERDIGEST

Acomputer by itself can't do much: it needs some way of communtcating with the outside world. It needs to be able to sense external conditions (a switch closure. for example), and it needs to be able to control circuitry (a relay, for example). The principles of interfacing those types of devices are not difficult; we'll show how easy it is by building an experimenter's card for the IBM PC expansion bus.

The card contains three etghtbit parallel ports. but is built from just a few components. thereby making construction simple and inexpensive. We 11 describe several circuits for interfacing LED's. switches. and other devices to the card, as well the software required to conftgure and use the I/O ports. We'll also show you how easy it is to set up and use the card with simple BASIC programs.

The 8255 PPI

The heart of the design is the 8255 Programmable Peripheral Interface. or PPI. The 8255 was originaliy designed for use with the 8080 microprocessor. but it is also used with 8088 designs including the $P C$ family.
The 8255 has three eight-bit TTL-compatible VO ports ($\mathrm{A}-\mathrm{C}$). and it can operate in three different modes. Depending on the mode. the lines in each port act
differently
In Mode 0. Ports A and B can operate as either inputs or outputs, and Port C is divided into two four-bit groups. either of which can operate as inputs or outputs.

In Mode l. Ports A and B can again act as etther inputs or outputs. However, the two four-bit ports in Port C are used for handshaking and control purposes in conjunction with Ports A and B. In Mode 1. the Port C lines might be used to strobe data (supplied on elther Port A or port B) into a printer. and to detect its "busy" stgnal.

Last. in Mode 2, Port A is used for eight-bit bidirectional bus $V /$ O. Port C is used for control and status information, and Port B is not used at all. For further detalls on operating modes. consult Intel's Microsystem Components Handbook. Volume 2.

You select among the various modes by writing a value to a special control port: Table 1 shows the control-port values required to achieve various I/O combinations. Our examples all work in Mode 0.

The PC interface

With Intel microprocessors. communications between the CPU and various devices is accomplished through I/O (Input/
(Continued on page 75)

EDITOR'S WORKBench

68000 News

Iheard from an old friend. Peter Stark. recently. Peter is one of the world's more accomplished 6800/68000 hackers. You may recall hls series on butlding a 68000 computer that uses IBMPC style display adapters. I/O cards, case. keyboard and power supply. The sertes ran from May 1987 to September 1988, and PT-68-K2 kits are still available (see Vendor Information below for more information). Peter wrote the operating system that controls the PT-68-K2.

Anyway. it seems that one of the older 68 xcx magazines has cut coverage of hobbyist/hacker systems. so Peter is beefing up his own newsletter, trying to take up the slack. If you're interested in $68 \times x x$ systems. contact StarkK Software Systems Corp., P.O. Box 209. Mt. Kisco. NY 10549. Tell 'im I sent you.

System Analyzers

What's inside your home computer? You're probably intimately familiar with it. But what about your office PC? What about your coworker's PC (you know. the cute little blond who's always coming to ask you for advice)? What about the six. twelve, or hundred PC's that you provide service and support for? Maybe you know. maybe you don't. Most of the time you don't care. but when you're installing new hard-
ware or software. you do care, desperately. Several products have come to market recently that purport to provide useful information on PC internals: System Sleuth 2.0 (by DTG) and Manifest (by Quarterdeck Office Systems).

Manifest's main purpose is to help optimize memory usage: System Sieuth provides most of the information that Manifest does, along with a wealth of information on other PC subsystems. as well as several useful utilities.
Manifest can display the contents of just about all types of system memory. including conventional. extended. expanded, and even the CMOS memory in AT's. of course, the program doesn't just provide raw hex dumps: instead, it provides nicely formatted. organized listungs of memory usage. interrupts hooked by various programs. I/O port usage, and more.
The program pops up onscreen in several panels. You move a pointer up and down a list In the left panel to select the type of memory, and left and right in the upper panel to select particular detalls of that type of memory. You can also make your selections with a mouse.

Manifest's most useful display shows how interrupts are used by programs located in the first megabyte of memory. For example, in Fig. 1, you see the hex segment in the left column, the program located there. and the interrupts it claims last. By pressing F3, the display changes to a sequential listing of interrupt vectors (00-FF), the address in memory where each vector points, and the program that "owns" that vector.
You can load Manifest as elther a transient program or as a TSR. In the latter case. the program uses more than 100 K of memory. but it could still be useful when trying to track down competition for interrupts among several different programs.
System Sleuth provides a similar display, as shown in Fig. 2. System Sleuth also provides a sequential listing of interrupt vectors. but without addresses and owners.

FIG. 1

FIG. 2

Manifest provides a nicely formatted display of the BIOS data area (0040:0000): System Sleuth doesn't do that, but it does provide a hew/ASCII display routine that lets you view any area of memory beneath 1 MB. Manifest measures the access speed of various areas of memory ($0-640 \mathrm{~K}$, video RAM, video ROM. etc.) and reports values relative to a stock PC/XT. System Sleuth has nothing comparable. Manifest also shows each byte in CMOS memory: agaln. System Sleuth has nothing comparable. All in
all. Mantfest has more powerful memory reporting and ratings capabilities.
On the other hand. System Sleuth includes functions for reporting on hard disk drive health. Various menu items provide information on the number of disk drives. and the physical characteristics of each drive (things like bytes/sector, sectors/ cluster, sectors/track, etc.). You can view a hex/ASCII dump of a disk file. and even test a disk for bad sectors.

System Sleuth also includes
several external utility programs. including one that finds files across multiple disk drives. another that searches for duplicate file names (also across multiple drives). another that deletes files with certain file names ('.bak. *.tmp. etc.), routines to save and get the data stored in CMOS memory, and an EMS emulator that uses 286 extended memory. The company is adding additional utilities all the time: they tell me a dlsk cache is next.
I ran Manifest and System Sleuth on several different machines. and had problems with both programs on my AST Premium/286. It has built-in EMS 4.0 hardware that is controlled byAST's EMM driver. I also use a memory manager called Move em (made by Qualitas. the 386MAX people) to load several device drivers and TSR's into high memory labove the video adapter but below the 1 MB mark). The problem was that I simply could not run etther Manlfest or System Sleuth on the AST with Move'em Installed: the machine crashed every time. That's completely unacceptable: no diagnostic program should ever crash any machine.
However. I had no trouble running either program on several other machines. Including a Tandy 1100 FD "notebook" computer. a Dell System 300 (386). and a $33-\mathrm{MHz}$ intel 386 system. (Both 386's were running 386MAX.) Interestingly, both programs were sinart enough to figure out that the CPU in the Tandy is a V20. not an 8088.
1 learned a few tricks from Manifest's "Hints" section. One showed me how to map another 32 K of EMS memory into an un-

VENDOR INFORMATION

- PT-68-K2 168000 kit prices start at \$2001, Peripheral Technology. 1710 Cumberland Point Drive. No. 8, Marietta. GA 30067. (404) 984-0742.

CIRCLE 271 ON FREE INF ORMATION CARO

- System Sleuth 2.0 (\$149.95). DTG. 7439 La Palma Ave.. Sutte 278, Buena Park, CA 90620-2698. (714) 994-7400.
CIRCLE 272 ON FREE INFORMATION CARD
- Manifest (\$59.95). Quarterdeck Office Systems. 150 Pico Blvd.. Santa Monica. CA 90405. (213) 392-9701.

CIRCLE 273 ON FREE INFORMATION CARD
used area of the VGA video adapter range and thereby load a TSR up there. Another saved me about 3 K of additional low DOS memory. All in all, I now boot with about 130K of TSR's, but still have 592 K of free contiguous DOS memory. all with a VGA adapter that runs graphics just fine.

Reports

Both Manifest and System Sleuth can print partial or comprehensive reports of their findIngs. You must print System Sleuths reports via the menus. but you can get them from Manifest either via the menus or in a command line mode. For example, if you start the prograni like this:

CMFT $\mathrm{S} O$

you'll get a listing to the screen of the System Overview: similar reports are avallable for each category and sub-topic. or all categories and sub-topics. The command line mode could be
useful If you wanted to print reports for several PC's. Just create a batch file with the desired command lines and then run it on each machine.
Both programs come with online help. Manifest's help system consists of a single screen of information for each topic: System Sleuth inciudes quite a bit more information, mostly tutorial in nature, that should be useful for those still gettlng up to speed on device drivers. different kinds of memory, etc. Of course. the information provided is no substitute for an IBM Technical Reference manual.
Manifest comes with a very well written and produced manual that is tutor ial in nature. System Sleuth's manual is not so well produced. and it mostly duplicates the Information in the help screens. However. If you know a little about DOS. both manuals are superfluous.
All in all. Manifest's strength is information about memory: System Sleuth takes a more systematic approach. Manifest's user interface and documentation is also more polished. But where it counts (resolving interrupt conficts). both programs deliver.

System Sleuth lists for about $\$ 150$. and Manifest for about \$60: I've already seen Manifest discounted via mall order to about $\$ 40$.

It may be worth pointing out that nelther program will help with the truly tough problems: machines that won't boot. hardware conflicts between adapters trying to use the same interrupts or VO ports. etc. There you'll be forced to dig out manuals and compare and contrast jumper and DIP switch settings.

I/O CARD
continued from page 73

Output) ports. Just as each house on a street has its own address. each plece of hardware connected to an intel processor has its own port address. For example, serial port COM1 is located at address 03 F 8 h . 1BM's Technical Reference Manuals list
the specific port addresses assoclated with specific pieces of hardware.

Our project uses 32 port addresses between 0200 h and 02 FFh . In order to avoid conflict with other devices. those 32 addresses can start at one of elght locations in that range: you select the desired starting address via a jumper block. as shown in Table 2. Both hex and dectmal values
are shown: If you're programming in BASIC. you'll probably find the decimal values useful.
As shown In Fig. 1. the address ranges are decoded by IC2. a 74 LS 138 demultiplexer. The 74LS 138 takes three inputs and decodes the various combinations thereof Into eight exclusive outputs. The 1C also has one ac-tive-high (oi) and two active-low (G2X and G2B) enable inputs.

TABLE 1-8255 PORT CONFIGURATION

Control Word			Port	
Hex	Decimal	A	B	C
80	128	Out	Out	Out
82	130	Out	In	Out
85	133	Out	Out	In
87	135	Out	In	In
88	136	In	Out	Out
8A	138	In	In	Out
8 C	140	In	Out	In
8 F	143	In	In	In

TAELE 2-JUMPER POSITIONS
AND PORT ADDRESSES

	Address Position	
Hex	Declmal	
1	200	512
2	220	544
3	240	576
4	260	608
5	280	640
6	$2 A 0$	672
7	$2 C 0$	704
8	$2 E 0$	736

Address lines A8 and A9 drive the control inputs, along with AEN (Address Enable), which is low when the microprocessor can access the expansion bus. When A8 and aEn are low and A9 is high. IC2 will decode address lines A5-A7. providing a single activelow output. In that way, the 256 byte page of I/O space beginning at 0200 h is divided into eight 32byte chunks. The elght outputs of IC2 are brought to the jumper block, which passes one enable signal on to the 8255 .

The 8255 itself has only 4 ports. Port A is always at the base address. port B is at base +1 . port C is at base +2 , and the control port is at base +3 . Lines A0 and Al select which port is addressed, and RD and Wr determine whether data is read or written. respectively.

For example, if you short jumper position three. the base address would be 0240h. so you would access Port A at 0240 h . Port Bat 0241h. Port Cat 0242h. and the control port at 0243h.

Construction

The circuit is built on a stan-

FIG. 1-ADD THREE 8 BIT PARALLEL PORTS for I/O experiments using this simple circuit. The jumper block lets you assign port addresses from 0200h to 02FFh.
dard prototyping card for the 8 bit IBM PC bus. All required parts are standard ttems that can be obtained from most mail-order
suppliers. Component placement isn't critical, but lead lengths should be minimized. (See Fig. 2). To avold damage dur-

FIG. 2-THE AUTHOR'S PROTOTYPE was used to burn EPROM's, control a model railroad setup, and more.

BP181-It is probable that 80% ol dot-matrix printer users only ever use 20% of the features offered by their printers. Thws book will help you unlock the special features and capablities thal you probably don't even know exist. To order your copy send $\$ 6.95$ plus $\$ 1.50$ for shipping in the U.S. to Electronle Technology Yoday Inc., P.O. Box 240. Massapequa Park. NY 11762-0240.

Ing construction. it's best to use sockets for all IC's. Neither IC used in this project is particularly sensitive to static damage. but you can never be too careful. The author found it convenient to use red wires for power and ground connections. white for bus connections. and blue for connect ions from the 8255 to the output connector.

Start with the 6 wires that run from the bus connector to 1 C 2 . (By the way, looking at the component side of your motherboard. the " B " side of each expansion slot is on the left and the " A " side on the right, and the connectors are numbered from i to 31 from the rear of the board to the front.) Take your time. and check each solder joint for shorts with adjacent pins.

Then connect the eight wires from IC2 to the jumper block. continue with the eight data-bus wires from the bus connector to the 8255. then the six control wires to the 8255 . Then connect the 24 wires from the port outputs of ICl to Jl. The author used a 40-pin header connector for J 1 in the prototype. Many projects require a source of +5 volts, so power and ground lines are also brought to Jl

SECRETS OF THE COMMODORE 64

BP135-A beginners guide	
to the Commodore 64 pre-	
sents masses of useful data	
and programming tip5. as	
well as describing how to	
wes	

10 OUT 579.128
20 OUT 576.255
All of the LEDs should light. If one doesn't. check your wiring.

Reading tnput values is just as simple. The following program would continually read and display the contents of port B. to which various switches (Fig. 4-a. Fig. 4-b) and sensors (Fig. 4-c) might be connected:

10 OUT 579.130
$20 \mathrm{~A}=$ INP 577
30 IF A
40 GOTO 20
That program sets up Port B for input, and then reads the value of the port. If the value is less than 255 (in other words, if at least one line is low). the value is printed.

The 8255's inputs and outputs are TTL compatible. meaning they don't have much currentcarrying capacity. To drive heav-ier-duty devices, use a lransistor, as shown in Fig. 5 -a, or add a relay, as shown in Fig. 5-b.

More Ideas

Now that you understand the basics. the sky's the limit. What eise could you do?

FIG. 3-FOR OUTPUT DISPLAY, add eight LED'S, eight resistors, and two 7404s.

FIG. 4-FOR INPUT, add a toggle switch (a), a pushbutton switch (b), or an opto-isolator (c).

- How about building a robot? Output ports could be configured for motor control, volce synthesis, robotic arm control, etc. Input ports could be used to read bumper sensors, volce recognition, or keypad input.
- Or build a burglar alarm: Input ports would read data from win-

FIG. 5-FOR EIGH-CORRENT OUT PUT, use a transistor to driue a lamp (a) or a relay (b).
dow and door switches. and from motion detectors. Outputs would control lights, asiren. and a telephone dialer.

- Or build a home heating system. One port would be dedicated to motors that would open and close heating vents, control blower motors, etc. Input ports would read thermometers in each room and outside the house. A realtime clock would be used to turn heat on in the morning and off in the evening. You could include a wind speed gauge. controls for a solar hot-water heater, and even calculate your energy savings.
- Or build a scoreboard, a light show, or an IC tester. How about a computer-controlled popcorn popper or a dog food dispenser? The author has used his card to run a plotter, an EPROM programmer, and a model-rallroad demonstration.

Another thing you could try building is an automatic home lighting system. Input ports could monitor doorways with pressure-sensitive switches or infra-red beams. The system would sense someone entering or leaving the room, and turn the lights on and off accordingly. The system would have to keep track of how many people were in the room, turning the lights off only after the last person leaves.

For some projects, three ports may not be enough. In that case. just connect a second 8255. Wiring all Itnes except cs in parallel to ICl . Connect the cs line of the second 8255 to a different position on the jumper block-and enjoy 48 lines of digital I/OIICD

CIRCLE 178 ON FREE INFORMATON CARD
cars to justify owning foreign-made vehicles. And to tell the truth, I'd be vehicles. And to tell the truth, I'd be
somewhat embarrassed to admit owning a standard U.S. family car. In the same sense, l'd feel that I had blown my credentials as an "Audio Maven" if word got around that I used a receiver in my main system. But aside from emotional pre-
dispositions, what valid reasons are But aside from emotional pre-
dispositions, what valid reasons are there for choosing separate components? Output power is one. Given nents? Output power is one. Given
the extended dynamic range of compact discs, the advantage of compact discs, the advantage of
having at least 100 watts per channel of clean power on tap seems inarguable. The sense of ease and openness, and the bass solidity all testify to the sonic virtues of high power.
Today, the top power available in a
receiver is about 130 watts per channel. For many people that is probanel. For many people that is proba-
bly more than adequate, but for those who want their music very loud and very clean when heard through medium-to-low efficiency speakers, 200 watts is an absolute minimum. That explains why the minimum. That explains why the
1990 stereo buyers' guides list dozens of 300 and 400 -watt-per-channel amplifiers. Incidentally, I have
clipped a 200 -watt-per-channel amnel amplifiers. Incidentally, I have
clipped a 200 -watt-per-channel amplifier trying to reproduce a solo piano at live sound levels, so the desire for ever higher amplifier

AUDIO UPDATE
continued from page 72

power does have a genuinely rational basis given certain listening circumstances.

Upgrading

The essence of being a totally

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covert updated marine and aviation rules and regulations, trankistor and digital circultry. THE GENERAL RADKOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains vital information. VIDEO SEMINAR KTTS ARE NOW AVALLABLE.

CIRCLE 182 ON FREE INFORMATION CARD

\author{

WPT PUBLICATION

 979 Young Street. Suite A Woodburn, Oregon 97071
 Phon (503) 981.5159
 }

The MCPM-I system clows the IBM PC and compatibles to le used as a complete dovelopment matem for the Motorola MC68705p3 P5. U3. U5 AR3 and Ps single fhip micucompulere the कyltiom nctudes a croes
 programming boerd thet comects to e wenw port-Price- $\$ 449.00$ VSA and MASTERCARD eceepled

RRW3. BCK 8C Barton Vermont 05822 Phone (802) 525-3458 FAX (802) 525-3451

CIRCLE 188 ON FREE INFORMAYION CARD
dedicated audiophile (which I am not) is the never-ending pursult of the holy grail of "perfect" sound reproduction. In practice, that means constant upgrading-or at least re-placement-of existing components in hopes of coming ever closer to sonic perfection. The pursuit is encouraged by several small circulation "underground" audio magazines, such as Stereophile and The Absolute Sound. Their detailed reports on each new high-end (meaning very expensive) preamplifier and power amplifier becomes Holy Writ for the dedicated audiophile seeking to determine each product's precise place in the hierarchy of sonic perfection. Page after page will be devoted to what is almost a frequency-by-frequency analysis of each audio product's sound quality.
If the reviewed product appears to offer some real or imagined advantage over his existing equip-ment-which was the best available only four or five months ago-the dedicated audiophile buys it as soon as his finances permit. Incidentally, some excellent power amplifiers are available for about $\$ 2$ a watt, meaning that a 200 -watt-perchannel amp can be had for about $\$ 800$. One can also spend $\$ 16,000$ (!) for a 200 -watt-per-channel amplifier, but I think that the joy of owning such a product has little to do with its sound per se.
I shouldn't exclude FM tuners
from the upgrading process, although most audiophiles are aware that the broadcast stations are far more responsible for tuner sound quality than any other factor. In any case, it is obvious that owning a receiver makes piecemeal component replacement impractical. Receivers also tend to complicate matters when something goes wrong electronically. If a separate tuner goes bad, the rest of the system is still functional while the tuner is in for repairs. And even a defec-
tive preamp won't stop the music if the power amp has accessible inputlevel controls.

The bottom line

So, after all of the above, what do I recommend? As I indicated, I think it comes down to how loud you like your music and the efficiency of your speakers. If you want to reproduce music at natural volume levels, then $200+$ watts per channel is what you need. But if your taste, you wife, your neighbors, or your
budget doesn't permit such audio extremes, then a high-powered receiver may comfortably fit your requirements.

If possible, listen to the receiver under consideration with the speakers you are going to use it with. Then, listen to the same speakers at the same preferred volume level driven by a significantly higher power amplifier. If the sound quality is about the same, then a receiver is the way to go.

R-E

ADD A DISPLAY
continued from page 62

TABLE 2 -USER DEFINABLE CHARACTERS

MARKET CENTER

FOR SALE

GREAT buyel Surplus prices. ICs. linears. Iransiormers. PS, slepping molors. yacuum pump, pholotransistor, melers. LSASE. FERTIK'S. 5400 Ella, Phila., PA 19120.
DESCRAMBLERS. All brands. Special: Combo Jerrold 400 and SB3 \$185. Complete cable descrambler kit \$39. Complele satelfite descrambler kit S45. Free catalog MJII INDUSTRY, Box 53\%. Bronx, NY 10461-0531.
T.V. notch filters, surveillance equipment, brochure \$1.00. D.K. VIDEO, Box 63/6025. Margate. FL 33063. (305) 752-9202.

M CROWAV TY FECEWERS 1.9 to 27 GHz	
	2 CH Compaci Dist System - 877% 5 CH Dish System - 50.95 12 CN Yail (hod) System - sea. $\%$
WSNMCICOD	gukitity becouits UFE pime maratity

RESTRICTED iechnical information Electronic surveillance. schematics, locksmithing, cover! sCiences, hacking, etc. Huge setection. Free brochures. MENTOR-Z, Drawer 1549. Asbury Paik. NW 07712.
RENTA L movie stabillzer. Connect between VCRs or 10 montror. Satisfaction guaranleed. S69.95. S4.00 handling. 1 (B00) 367.7909.

TUBES: "otdest." "latest" Parts and schematics. SASE for lists. STEINMEIZ, 7519 Maplewood Ave. RE. Hammond, IN 46324.
ENGINEERING software, PC/MSDOS. Hobbyists - students - engineers. Circuit design $\$ 59.00$. FFT analysis $\$ 69.00$, Mathematics $\$ 49.00$. Logic Simulation $\$ 49.00$, Circuit Analysis $\$ 29.00$. Free catalog, (614) 491-0832, BSOFT SOFTWARE, 444 Colton Rd., Columbus, OH 43207.

CABLE TV converters and descramblers. We sell only the best. Low prices. SB-3 \$79.00. We shlp C.O.D. Free catalog. ACE PRODUCTS, PO Box 582, Depl. E, Saco. ME 04072.1 (800) 234-0726.

SAMS closeout sale. 2 to $2600 \$ 6.00$ each posipaid. MCIVlse. Call $\$(800)$ 274-2081. 9-5 CST. PRINTHEAD repairs - Okidata. Epson, NEC. Tosmiba, Digital, texas Inst, also do board repar DATAFIX, (201) 322-7666.
TUBES Sytvanta 6 O6, el6GC. 20LF6 etc. Huge discounts. ARLEN SUPPLY, 7409 West Chester Piscounis. Upper Darby, PA 19082. 1 (800) 458-1301.
TJ SERvICES is here to serve youl Our quality products, quick courleous service, knowledgeatle sales people and rock boitom prices prove in! Not sure what you need? Call (313) 979-8356 well help We specialize in Jerrold, Homiln, interterance fil. ters and mos1 SA equipment

FEBRUARY 1984 project. Complele parts with power supply. $\$ 38.00$. Postpald. JIM RHDOES, INC.. Box 3421, Brisiol. TN 37625.

CABLE TV converiers: Jerrold. Oak. Screntific Atlantic. Zenth \& many olhers. "New MTS" slereo add-on: mute \& volume. Ideal for 400 and 450 awders' 1 (800) $826-7623$. Amex. Visa. MC accept. ed. 8 \& B INC.. 4030 Beau-D-Rue Drve, Eagan. MN 55122.
TUBES. NOw. up to 90% off, SASE. KIRBY, 298 West Carmel Drive. Carmel. in 46032 .

BARGAIN HEADCUARTERS! - JENAOLD TOCOM FHABUN HIFIC ATANTA
ONK MJSE OHLY $\$ 0^{\circ}$
© montri warenty! We arip C.O.O.I Lowet retail whototere priceti FREE CATALOG: Grobw Cable Monwork
1012 living St. Suite 109 12 Fing S. Surt
S. Fo CA M122
OROER TODAY! 800-327-8544

THE ELECTRONIC GOLDMINE

FREE CAIALOG

famous "Firestik" brand cb antennas

 AND ACCESSORIES. QUALITY PRODUCTSFOR THE SERIOUS CB'er. SINCE 1962
FIFIESTIK ANTENNA COMPANY 2614 EAST ADAMS PHOENIX. ARIZONA 05034

PROGRAMMABLE stepper molor dive 8 control for under $\$ 100$. IBM PC/XT compatiole. Commodore 64, or other with 25 pin paralter port PCB, interlace, \& software. Send for delatited literature to MASE, R.O. 2 Box 166. Mohrsvile. PA 19541.
DIGITIZER tor IBM compartble PCs 640 by 480 resoluion trom VCR video camera $\$ 85.00$ demonslratlon disk $\$ 3.00$. CODEWARE, Box 3091. Nashua. NH 03061.
COMMUNICATIONS/elecironic equipment, sales, service, FCC Ifcensed, free chalog RAYS, PO Box 14862, Fort Worth, TX 76117-0862 FREE cataiog. Interfaces for IBM compalibles Dig. thal ${ }^{\prime} \mathrm{O}$ and analog input. Comrol relays, motors lights, measure temperature, voilage JOHN BELL ENGINEERING, INC ${ }^{2} 400$ Oxtord Way, Belmost CA 94002. (415) 592-8411.

CABLE descramblers (Jerrold) from $\$ 40.00$. Tocom VIP tesi chip. Fully activates uni. $\$ 5000$ Call (213) 867-0081.

CABLE TV

TB-3 (Tri-Bi) or SA-3

Quantity Prices

Each
50

Each
50

100

Each

One tree can make 3000000 matches

One nuach can burn 3000000 trees.

PRINTED circuit boards etched s drilled. Free defrery. K\& F ELECTRONICS, INC $_{4} 33041$ Groesbeck. Fraser. MI 48026. (313) 294-9720.
PHOTOFACT tolders, under $1400 \$ 4.00$. Oihers 6.00. Postpard. LOEB, 414 Chesinut Lane. East Meadow. NY 11554.

CABLE TV descramblers M35E. Top quality. Tested. quaranteed, vari-sync available Dealers wanied $\$ 39.00 .1$ (800) 648.4600 .
STOP the electronic thewes! Jechnlques. equipment, laws. Free information, SVS, 198 N .2 and Sireet, Suite 6. Portervilise. CA 93257. (209) 781-2834.
ROBOTICS sotware. PCMSDOS. Explore computer vislon, sonar sensing. Free brochure. AOBOTS ETC. Box 122. Tempe. AZ 85280

IMPORTANT facts lor cable box buyers Don'I make costly mistake when you buy Fast shipment. Send $\$ 1000$ to: VESTOR ASSOCIATES, Sulte 205. 25 Forest Sireel. Attleboro, MA 02703.

CB RADIO OWNERS!

We specialize in a wide variety of technical informatlon, parts and services tor CA redios 10-Meter and FM conversion kits, repair books, plans, high-pefformance accessones. Thousands
of satished customers since 1976. Catalog \$2
CEC INTERNATIONAL
P.O. BOX 315CORE. PHOENIX, AZ 85046

SOFTWARE as low as $\$ 199$. IBM Macintosh. Armiga, Apple \& C64/t28. CALIFOANIA FREEWARE, 1747 East Ave 0 C-1. Palmdale, CA 93550 . Free Catalog Call 1 (800) $359-2189$
SOURCES wanted for exciting. quality, proven products of interest to readers of this magazine. DLJ-A, 485 Fuhriman. Providenci. Utah 84332. Free catalog.
DESCRAMELEAS - for Iree catalog contact CABLE CONNECTION, 1304 E. Chicago Streel. Sute 301, Algonquin, HL 60102. (708) 658-2365.
SAMS photofacts 1 rom 1964 thru 1972. Sell all make offer (818) 353-4603. KAREN ROBERSON. Los Angeles. CA.
COMPUTER-aided-living, new delalled guide shows how to use your compuler to control lights and appliances. pay bills, obteln free sott. ware, much more! Send $\$ 9.95$ (ppd) to: DANIEL ENGINEERING, 36437 Spruca, Newark. CA 94560.

FADIO fubes. parts. Extensive listings $\$ 1.00$ (refundable) DIERS, 4276-E5 North 50 ih Sireet, Mil waukee. WI 53216-1313.
SURGE protectors. for all types of electronic equipment. Low prices. super protectionl Free intormation DATA STAR COMPUTER SERVICE, 305 Summ Trace Drve. Tucker, GA 30084.
CORDLESS soldering Iron! New technology heals up In seconds. 5 year warranty. $\$ 19.95$. Free shlpping. AUTOCOMM. 1744 A S. Parker, 117, Aurora. CO B0014.

REMOTE CONTROL KEYCHAIN
 compielo w/mini-\{f ansmitser Fully assembied including plens lo bulld your own auto alarm Quanilly diccounle avallato $\$ 24.95$ Check, Vina or M/C MATECT PO 80× 5442 SO SAN FRA1 872-0128 PLANS AND KITS
BUILO this five-digil panei meter and square-wave generator including an ohms, capacitance and fre quency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Falribeld. CT 06430.

MINIATURE FM transmitters! Tracidng lransmitters! Vorce disquisers! Bug delectorsl Phone Devices! Morel Available in kits or assembled! Catalog $\$ 2.00$ XANDI ELECTRONICS. BOX 25647. Dept 60E, Tempe, AZ 85285-5647.

CATALOG: hobby/broadcasting'HAM CB: Cable TV, trangmitters, amplifers, sunvellance devices, computers. morel PANAXIS, Box 130-F6. Paradise. CA 95967.

SURVEILLANCE transmitter kits are avallable to law entorcemenl agencies that operale on trequencies they prefer. Four models of each; teleptione. room, combinalion tetephone/room Is ans mitters tune from 65 to 305 MHz . Send $\$ 1.00$ foverseas airmail $\$ 2.00$) for catalog. included is Poputar Communicatlons book revew of "Now Hear This! Eloctronice Eavesdropping Equipment Design" by Winston Arrington. Book Contalns 58 transmitter schematics SHEFFIELD ELECTRONICS, 7223 SIony Island Ave.. Chicago, IL 60649-2806
INVESTIGATORS. expenmenters - Qualify plans Micro and restincted devices. Free catalog. Sell addressed stamped envelope required KELLEY SECURITY INC., Suite 50, 2531 Saweile BIvd., LoS Angeles, CA 90064 .
CB Tricks II book. Power amplifier design and ineoY. UHF CB tune ups. Send \$19.95 MEDICINE MAN CB, PO Box 37. Clarksulle, AR 72830.
DETECTION - Surveillance, debugging. plans, kits, assembled devices. Latest hightech calalog $\$ 5$. DETECTION SYSTEMS. 2515 E. Thomas, *16-864F. Phoenix. AZ 85016.

BuILD robol from outer spacel Plans $\$ 11.95$, details Iree ROBOT WORISS, Box 1979. Colorado Springs. CO 80901 .
REMOVE lead vocals from slandard slereo records, CDs. tapes. FMbroadcasts, so you can be the lead singer of your lavorite band. Theory/schematic $\$ 6.95$. PCB and parta aiso available. WEEDER TECHNDLOGIES, 14773 Lindsey. Mi. Orab. OH 45154
BARGAIN plan. Desk top computer stand Easily buit. Personal pride. Send $\$ 4.00$, now .. CREATE, PO Box 440062. Aurora. CO 80044.

Pacific Cable Company, Inc. 7325½ RESEDA BLVD., DEPT. R.6 • RESEDA, CA 91335 (818) 716-5914 • No Collect Calls • (818) 716-5140 IMPORTANT: WHEN CALLING FOR INFORMATION Please have the make and model \# ol the equipmenl used in your area. Thank You

UNICCOIRN YOUR I.C. SOURCF

COLLIMATOR PEN
 \{INFRA-RED\}

A low ponwer collmator pen containing of
MOVPE prownt pain auided Gathe laser MOVPE prown gein puided Gaths laser
 W outpur power of 25 .nv les These commatod for indurimi sopticistions
 alignment, the

Ins non-hermuce rejuinss stee encrpstation of the pen is spicificaly ouswoned for easyalgnmenl han aptical read of witte systom and constith of a lens and a laser divion The lens srstem collumates the drvioping laser light The wavtront guaify Is difraction limited
The hossung is crircular and procesion manufactured with a diameter of 110 mm and an accurdty berween + ando $-11 \omega \mathrm{~m}$. HSFPACE * +80.00 OUR PRICE. $\$ 39.99$ - QUALITY COMPONENTS LOW PRICES SiNCE I靬S "

LASER DIODE (INFRA-RED)

Designed for peneral induatrial how power applicabons such as feading optical discs. Oplical
mipmories, barcode scannerk. se. curty sytiems, atignmert it. curty sytums, zignmert ict structed on an n-ripe galumarsennce substrale writta metal Or. paric Vhoor Pmase Epruxal process (m (1)PE).
ind devica is mounled in a hermetic SOTH480 menpsuls tion. (ohameler 90 mm)

The S81053 ti standatd equipped wekt a montor diode. 150laled from the case and beticaly couphed to the rear-emitting facket of the laser Thes tast-responding 当onttor sode can be used as a sensor to
contind tite baser opbical output Itveil

- WE CARAT A FULL LINE OF COMPONENTS! !

EPROMS

ORDER OUTSIDE CALIFORMA:
(800) 221-3432
ORDEN: N CALIFORAIA
ORDER BY FAX
(815) 341 (88833

NEW HE NE LASER TUBES $\$ 35$

Dealer Inquiries invited. Free Catalog
MEREDITHI INSTRUMENTS: 6403 N. 59 ch Are. Glendale. AZ B5301 - (602) 934-9387 The Sonve for Laser Surpiac:"

LASERS Bulld gunsights, poiniert, Iteshow ntelite, lab. Bluepmints and instructions $\$ 9.00$ each. 3 for $\$ 2000$. Free lisi NIGHTWHITER POB 4418 Phoenix, AZ 85016.
SURVEILLANCE Audio'video equipment - Debuggarg, industrial or privale 500 rem catalog $\$ 7.00$ SECURITY SYSTEMS 3017G Hudson, New Or leans, LA 70131.
TALKING voltmeterl Microprocessor controlled! No expenence necessary with microprocessors. Wite to: DIGITAL DREAMS Box $\$ 4192$ Huntingtion Beach. CA 92605.

KTS, amplifiers. anienna amplifers, alams. power meler. VU meter. motion detector. sifen, dimmer, timers, display, counter, chime, doorbell power supply and many more Calalog $\$ 1.00$. ARLI ELECThonics 2155 Verdugo B wivd 22 . Montrose, CA ThON
91020.
HOBBYISTS Build this Dual Volenge Pomer Supply. Includes complete insinuctions. parts tist and cracuit board. Specily $+/-5 \mathrm{~V},+1-9 \mathrm{~V},+/-12 \mathrm{~V}$. All 1 A. Only $\$ 1995$ 10: D.WELCH Box 7221, LaVerme, CA 91750.
DESCRAMBLING, new secrei manual. Build your own descramblers for cable and subscription TV. Insiructions, schematics for SSAVI, gated sync. sinewave. (HBO, Cinemax. Showtime. UHF. adult) $\$ 8.95$, $\$ 2.00$ postage. CABLETRONICS, Box 30502f, Bethesda, MD 20824.
70 WATT sudlo amplifier. Simple and easy to build. Plens $\$ 6.00$. T.- L. ENTERPRISES, Surte 302RE. 1902 Ridge Road. West Seneca, NY 14224.
FM transmitler $88-108 \mathrm{mHz}$ kit $\$ 12.95$: Flyback lestor assembled $\$ 95.99$; S : H 4\% SIERRA ELEC. TRONICS Box 709 Eliers. FL 34680-0709

CABLETV DESCRAMBLER LIQUIDATION!

- Major Makes \& Models!
- Will match or beat anyone's prices!
- Dealer discounis at 5 units!
- Examples:

HAMLIN COMBOS - $\$ 44$ ea. (Min. 5)
OAK ADD/ON
OAK M35B
$\$ 40$ ea. (Min. 5)
$\$ 60$ ea. (Min. 5)
WEST COAST ELECTRONICS
For inlormalion: B18-709-1758
Catalogs \& Orders: 800-628-9656

FM MRELESS microphone, 3 mile range. plans \$4.00. FM P. O. Boz 4383, Bloomington, IL 61701-4383.

VCR ampliber Tiansmas to any TV in the house. Complete unt only 54995 . Winuture FM tranem. ter - size of poasape staryc up to 1 mlog range. $\$ 29$ 95. CAS ELECTRONCS 1525 Aviation BYod. Sulte 136, Redondio Beach, CA 90270

SCRAMBLING NEWS MONTHLY. This month 'Buid a descrambler/cable ready TV interface" to Buid a descrambier/cabie ready TV interface io preserve remmote control functions with descramcomplete B-MAC technical update. This issue $\$ 6.00$. One vear subscription $\$ 19.95 \mathrm{Pyy}$ TV and Satelilie Deacrambiling series provides eysiem analysis. turn-ons, bulld-your-own, couniermeasures. elc. V1, \$14.95. V1989 \$15.95, V1990 $\$ 14.95$. Al $3 \$ 29.00$. New indexed catalog $\$ 100 \mathrm{o}$ call SCRAMBLING NE WS. I552 Hertel Ave, Butcall SCRAMBLNG NEWS. I552 Her
talo. NY 14216. COD's 716-874-2088.

MULTI CHANNEL MCROWAVE ANTENNAS

- CRYSTAL COHTROLLED MRICROWAVE ANYENIMAS FOA OVEA THE AR CABUE SYSTEMS WVIAEIESS CABLE
- CAPABLE OF मECEIVING 30 CHUNNELS
- OONVERTERS AVALABLE FOR ZENITK SYSTEMS CATALOG \& INFO: (203) 975-7543

VIDEO-LINK ENTERPRISES

SATELLITE TV

FREE calalog - Lowes1 prices worldwide, save 40 - 60%. Systems. upgrades. parts. all major brands factory frest and warrantied SKYVISION, INC., 2009 Collegeway, Fergus Falls, MN 56537. 1 (800) $334-6455$. MN \& intermatonal (218) 739-5231.
DESCRAMBLER: Build our low cost video only salellite TV descrambler for most satelite channels. Uses easy to get. everyday parts. Board \& plans $\$ 35.00$ US funds. Eoard plans \& parts $\$ 99.00$ US funds. Wired \& tested unit S 189.00 US tunds Send check, money order or Visa to: Valley MichoWAVE ELECTRONICS. Bear Piver. Nova Scotia, Canada BOS 1 BO or phone (902) 467-3577. 8am to Canada BOS 1 BO or phone (902) $467-3577.8$ am to Not to be used illegally

VIDEOCIPHER II manuals Volume 1 - hardware Volume 2 - soltware Either $\$ 34.95$. volume 3 projects/soltware. Volume 5 Documentation or Volume 8 - Experimentation $\$ 44.95$ each Volume 4 - Repair $\$ 99.95$. Cable Hacker 's Blble - $\$ 3495$. Clone Hacker's Blble - \$34.95. Catalog • 53.00 . COOS (802) 782-2316. TELECODE, Box 6426-AE, Yuma. AZ 85356-6426.
CABLE TV secrets - the outlew pubricalion the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers. converters. etc. Suppliers list inchuded $\$ 8.95$. CABLE FACTS. Box 711R, Palaskala, OH 43062

VIDEOCYPHER II descrambing manual. Sche matics, video and audio. Explan's DES, EPROM. Clonethasier. 3Musketeer. pay per-vew (HBO. Cinemax, Showtime. adult, etc) $\$ 13.95, \$ 2.00$ posiaga. Collection of software to copy and aller EPROMM codes. $\$ 25$ CABLETRONICS. Box 30502R. Bethesda. MO 20824.

TOCOM DESCRAMBLERS

TOCOM Descramblers complete units with remole $\$ 150.00$ each. Quantity discounts. SCIENTIFIC ATLANTA B500 : $\$ 200.00$. Call (213) 478-250s.

BUSINESS OPPORTUNITIES

EASY workd Excelient pay! Assemble products at nome. Catl for information. (504) 641-8003 Ext 5192.

MAKE $\$ 50$ /hr working evenings of weekends in your own electronics business Send for tree facts INDUSTRY, Box 531, Bronx, NY 10461
YOUR own radio stationi AM, FM. TV. cable. Lb censed unlicensed. BROADCASTING, Box $130-$ F6, Paradise. CA 95967.
inventors: We submit ideas to industry. Find oul what we can do for you Call 1 (800) 288-fDEA.
LET the government finance your small busmess. Grantsioans to $\$ 500.000$. Free recorded message: (707) 449-8600. (KS1).

WHOLESALE PRINTER CABLES.IBM-PC 2 pcs $\$ 12$ (6 ft) 2 pcs $\$ 14$ (10ft). All 25P included. (718) $628-4117$. Send M.O. To C\&D INTERNATIONAL. P. O. B0x $4333 Z$, L.I.C., NY 11104.

WAKE $\$ 75,000$ to $\$ 250,000$ yearly or more fixing IBM color monitors (and most brands). No investment. Start doing it from your home. (A 1elephone required.) Intormation, USA Canada $\$ 100$ cash US funds olhet countries $\$ 8.00$ RANDALL DISPLAY BOx 2168-R Van Nuys. CA 91404. USA.

LEARN to clearimepair Fax machines. Hupe new markell Earn $\$ 85 / \mathrm{hout}$. No experience necessary Free detaits call 1 (800) 537 -0589 or wrtte to VIEJO PUBLICATIONS 3540 Wilshire B'Ivd 310 Depl. FX200 LA CA 90010

AMATINE
 , BFODTGN

GRA1 - ANTI GROMTY GEREFAOOR

LC7 - GWOT BUFWNG CUTTMG LASEA

CP EN1 - ELECTROMC FNPNOISM TFOWOUES ... 8800

EM1-	LOWER POMERED COL GUN UUUCHER	8800
- Jい-	HCD LADOER 3 HOCELS	\$1000

\$05-	SEE M TiE DAFX	Stino
	LEMUA:DN DEVICE	-

W FINTE - 3 MAE RI VOCE TRANSMTIEA $\$ 4.50$
3 PFSIE - HAOCONTRCLLED PUSHM FIPE SABEA SNS50

를 PG5x - PLSMA LIGHTMNG GLDBE

 2 WWPMTK - 3 MME ENTO TELEPMON TRHSSNTTER. S49 50

EASY ORDEAIMO PROCEOURE - TOLL FREE $1+00-2 Q 1 \cdot T T S$
 VSA. WE CAECK. MONUSFRDS PCLUDE TOW SHAPPWG ORDERS \$1000S UP OMY ADO $\$ 000$ CAFADG $\$ 1000 R$ FREE WITH OPDER
INFORMATION UNLIMITED
P.O. ©0X 716. DEPT. A2. AMBERST. NH 03031

ONG UNIITS

PANASONIC WIRELESS

CONVEFTER
JERPOLD 400 COWBO W REMOTE
(DRX3DYC)
$8500 \ldots 69.00$
(DR1 3 3OC) …............... 134.00.
JERROLO 400 OR 450 RKEMOTE MNHD

UNIT

JERPOLO JRX 30 C
JERFOLO SB ADO ON
24.00
84.00
74.00

IERFOLO SB AOD ON WTTH TPL-BI
OAKM-35 COMBO
OAK MINICODE ($\mathrm{N} \cdot 12$)
HAMLIN MLD 1200.
SCIENTIFIC ATLANTA SA-3 AOD ON

9500

INTERFERENCE FILTER
(CHANNEL 3 OA 6)
NEW SCIENTIFIC ATANTA
COMBO
PIONEER DESCRAMBER
TOCOM VIP
ZENITH FLASHNO
ZENITH SSAV
EAGLE PD-3.

VIDEO-LINK Enterprises, Inc.

520 GLENBROOK RO., SUITE 202 STAMFORD, CT 06906
OROERS: 1-800-622-9022
CATALOG \& INFO: 203-975-7543
MONDAY F FPIOAY 10 AM - 5:30 PW. E.S.T.
IMPORTANT: Have make and model
\# of the equipment used in your area.

\square CASHIER'S CHECK \square M.O. \square C.O.D.
NAME
AOORESS
CINSTAIE/AP
PHONE
SMGNATURE
WAIVER. Stnce 1 , the underaigned, fully undersland thal the ownership of sable decoder doos nol give the owner of the decoder ter right to decode of viow pratrium catio chennes withoud proger authorizalion from inair local cable company. proser suthorizaluon foom thaithocal cable company. horeby dectura under panaty of parjury that an on cable TV syateme with proper authorizalion lrom local officiela of cable company offiows is accordance mith aplaplicable tederal and atate lam foderal ind virious alale law provtie for aubarantal chiminal and civil penalies for unwithorized use.

Daled:
Signed.
CIRCLE 64 UN FHEE INFORMAJION CARO

DIGITAL V.O.M./D.P.M. SALES-SERVICE-PARTS
 FLUKE-BECKMAN-SIMPSON-ETC U.S MADE ONLY, OUOTATION PRKOR TO WORK FAST SERVICE, OO DAY WARRANTY. STANDAAOS TRACEABLE TONBS SINCE 19AB. CALIBRATKON CERTIFICRTE ANM ABLE
 57.45 SALMEN HARAHUN LA 70123 504733-8755

EARN $\$ 1000$'s extre as pari-time computer dealer. Where to buy products at big discounts. Who to sell to. Financing whthoul cash. Obtaining iree soltware Exclusive бealer trade shows. Step-bystep check lisi. Industry inside knowiodige. Written by industry pioneer, Order now, only $\$ 24.95$ plus $\$ 4.00$ shipping/handling. CA residents add $\$ 1.81$ sales tax COANERSTONE PUBLICATIONS. Dept BE, PO Box 5151. San Jose. CA 95150 . Allow 2-4 weeks
EASYI Honeymaking one man CRT rebuilding machinery. $\$ 6.500 .00$ - $\$ 11.900 .00$. CRT. 1909 Lovise. Crysialake. IL 60014. (815) 459-0666.

EDUCATION \& INSTRUCTION

maGici Four illusirated lessons plus inside intormation shows you how. We provide almost 50 thcks including equipment for tour professional effects. You gel a bunder to keep the matenals in, and a oneyear membership in the International Pertorming Magicians with a plastic membership card that has your name gold-embossed You get a one-year subscrption to our quarterly newsletter "IT's MAGIC! Order now! $\$ 29.95$ for each course $+\$ 3.50$ postage and handing. (New York residents add applicable stale and local sales tax). THE MAGIC COURSE, 500-B BiCounty Boulevard. Farmingdale. NY 11735.

BE A RECORDING ENGINEER: Train al home for high-paying - Exciting careers. FREE informatron. AUDID INSTITUTE 2174 Union S1. Suite 22K, San Francisco, CA 94123
FREE SUESCRIPTIONS to over 200 major computer and business maģazines - Guaranleed. Write ior free Information. SEABIRD 4N Milita Drive, Lexington, MA 02173.
COMPLETE Oigital Trainang course Comprehen sive overview of digital electronics. Super handy desktop referencel Hundreds of pages illusirations Free newsletter with order Send $\$ 10.00$ to VIEJO PUBLICATIONS 3540 Wishire BI, 310 Dept OGt00. LA CA 90010 or call 1 (800) 537-0589.

Be a TV/VCR Repair Specialist
 Now vou can trin al home in spare tine for a money-making ence necessary No feed io quil your iob or senool Everythine is exploined in easy-to-understand language wilh plemty of ofraw ings. diagrams and photos We show you how to troubteshool and repair video-cassette recorders and TV sels how to handle house cats and shop repaits for almosi any make of tetevision or VCA Tools de inctuded wilh your course so you can get hands. on " piactice as you follow your lessons slep by siep Send for tree tacts about the exciting opportumites in TV VCA great carcer. MAIL COUPON TODAY
 [A | 925 Oak Street. Scramon, PA 18515
 - Please send me full intormation and color broctivue on how I can limere is mo obligation and no salesman will vist me
 Name.
 Adoress
 | Citristare.

 Prone (

BASIC video cleanung and mainlenance. TV one hall hour VCR one hour $\$ 3800$ each. JAMES BRADFORD PO. Bor 38359. Detroit, MI 48238.
EARN $\$ 32.000$ to $\$ 58.000$ working $6-8$ months annually. 6-7 months part lime studying requived U.S or loreign merchant marine redio officers licenses Booklet lells how and where to oblain shacy materi als, meet government requirements, exams Also address lisi of $100+$ government agencies, universities. US, foreign shipping companies. all poplen lial employers Send $\$ 750$ to KNOWLTECH INC. POB 1070 St. Pete. FL 33731.

ANTIGUE RADIO CLASSIFIED

Free Sample!

Antiquo Radio's
Largest Curculation Monthly Articles. Ads \& Claserineds.

6. Month Trial: $\$ 11$. 1-Yr: $\$ 20$ ($\$ 30-13$ t Class). A.R.C. P.O. Box 802-L4, Carlisfe. MA 01741

ELECTRONIC Camera Repair: Five day residency and 18 home study fessons. Video aided and 800 number supporled. Free brochure. C \& C ASSOCI ATES 300 Hightal Greencasile, IN 46135. (317) 853-3405. Regulated by Commission on Proprle. tary Education.
BECOME MV satellite news tachnician. Home traning Free info. SPACELINK P. O. Box 8497. Bndgeport. CT 06606

CABLE TV EQUIPMENT

JERROLD-OAK-SCIENTIFIC ATLANTA-HAMLIN ZENITI MANY MORE CALI TODAY:
$\sqrt{ }$ Only quality products sold $\sqrt{ }$ Enty to use
V Satafoction gurantoed V Knowledgeable seles nuff $\sqrt{ }$ Most orders shipped withis 24 bours CALL FOR YOUR FREE CATALOG MCl 1-800-228-7404 MAKE THE CONNECTION WITH
NU-TEK EIFEC TRONICST]. 5114 Balcones Wood Dr. 3307 Dept 298 Austin. TX. 78759

WANTED

IINVENTORSI Confused? Need help? Call IMPAC lor tree information package. In US and Canada: 1 (800) 225-5800.

INVENTIONS/new productsideas wanled: Call TLCI for tree information 1 (600) 468-7200 24 hours day - USACAnada.

COMPUTER BOOKS

DISCOUNT computer books. All tites avallable, including recent releases. Please call or write for our latesi calalog BOOKWARE, 147 Campvile Road. Northfield. CT 06778. I (800) 288-5662.

THIS IS A BOLDFACE EXPANDED AD with a tint background. . If you life ihls tormat, request ti. Your cost is $\$ 6.25$ per word.

INVENTORS

INVENTORS Can you patent and profit from your Idea? Call AMERICAN INVENTORS CDRPORA TION for tree information. Over a decade of service ; (B00) 338-5656. In Massachusetts of Canada call (413) $568-3753$

BESTEYMAIL
 Retes Write Natlonall, Der E, Sgresota. FL 34230 OF WTEFEST TO ALL
 GOYERNMENT SEI2ED YEMTCLES Low as $\$ 100 \%$ Amasing

 recortid mestsege reveals detalis! (7003 70s-20224.INSTANT POSTCARDSIt SAMPLE, send $\$.25$ simp. Box 171(RE), Aghisand, OR 97520

BUSINESS OPPORTUNTIES
EARN EXYRA INCOME matiling brochures for natlonal companes! No experience netecad! Mal ह1: Finance Pubileations, Soa 1674RE, Aryady, CO 80001.
I MAKE $\$ 2.000$ WEEK Recycling Gold Easy home businesse Fres bootlotl 1g00/246-2503 (32min) E290 WEEKLYI IMMEDIATE name incomel Photograph 52s0 WEEKLYI iuMEDIATE Mame incomel Photograph
dasa forms! Experience umnacessary. Free detais? PHILLIPSIRE), Gariett. PA 15s $42-0061$

LOGIC ANALYZER

 continued from page 27different trigger words. Up to three triggers can be OR-ed together on each level. It is possible to enter some rather complex triggering schemes, with conditional branches, loops, and the like. Trace recording can be tumed on and off on any level so that only the data that is of interest-not, for example, a 1,000 -count loop-is stored.

The PA480 48 -bit $\times 40 \%$-word, 25 MHz logic analyzer board costs $\$ 1595$. Either a general purpose pod or a microprocessor disassembly pod is required for operation. They run from $\$ 495$ to $\$ 695$.

Because we have limited space in which to describe the analyzer, we have only scratched the surface of its capabilities and features. We were very impressed with its operation, and think it deserves a serious look from anyone contemplating the purchase of a logic analyzerand a serious look from some of the competition as well.

THE ULTIMATE ELECTRONICS CATALOG

 14,000 meog entia electronic pern and equypar at grad ti.00 ta echect or Evoivy arder, or eall 1-800-549-366ts today and une your Man Lercard or Vian Careotidarad Hectronics, Inomporated 705 Wetarvitut Ave, Deylan, Ohio $45420-2599$

Name

Addreale

City
SLute
2ip
CARCLE 70 ON FREE INFORMATION CARD

KIT REPORT
 continued from page 57

coded from standard stereo TV broadcasts. However, some network TV shows are beginning to incorporate surround techniques as well. Surround sound can even show up where you'd least expect it. Our local public television station supplied the surround channel with music as they conducted a pledge drive in the front speakers.

The AD-2550 is priced at \$199. A pair of surround-channel speakers are also available from Heath for $\$ 49.95$. In our opinlon, the processor provides better-than-movie theater conditions. We get full control over the sound, and in our living room, the popcorn is fresh R-E

BIGRODM THIT PHONE

 Wh ston by mip nsivactions Send $\$ 13.85 \mathrm{log}$.

W20 Pumarpind ANo

If You Are Buying Any of The Following Panasonic ${ }^{\circledR}$ Products Elsewhere,

 You Are Paying Too Much! Period.* Series ECQ-E Metallized Polyester Capacitors
* Series ECQ-P(F) Precision Polypropylene Capacitors
* Series X-Y Interference Suppressor AC Capacitors
* Series ECE-Z Low Impedance Aluminum Electrolytic Caps
* Series TSW Large Aluminum Electrolytic Capacitors
* Series EVN-K0 \& EVN-K4 Carbon Trim-Pots. - Series EVM-31G \& EVN-36C Dust-Proof Cermet Trim-Pots * Series EVM-SOG Hermetically Sealed Trimmer Potentiometers * Series EVM-Q0 \& EVM-Q1 Hernetically Sealed Trim Pots * Series EVM-C7G Rectangular 15-Turn Trimmer Potentiometers
* Series EXBF 2\% SIP Resistor Networks

12 Months Saving Guarantee

 We will refund the first year Membership Fee of my member who has purchased $\$ 300$ or more worth of products from Electronic Buyers Club and has nox saved an amount greater than the firra year Membershap Fee, if buyng the same items elsewhereAnd these are only 1603 of the more than 10000 thems that we stock and offer to our Members of super low prlces. in fact after buyng fust a few hundred of the above thems from Electronic Buyers chb. you wil recover the $\$ 35.00$ Annual Mernbership Fee while your saving continues on for the rest of the year. Become a Member foday and stort poying Less.

30 Days Money Back Guarantee We will refund the full Membership Fee of any new member of Electronic Buyers Club who within 30 Days after receiving the Mernbership Binder, returns the Binder to EBC and asks for the cancellation of Membership.

1803 N.W. Lincoln Way • Toledo, OR 97391 PHONE (All 50 States \& Canada): 1-800-325-0101

FAX: (503) 336-4400 • Hours: 6:00 AM - 6:00 PM PST

REAncR REAMPER

- A friend gave NORMAN JUST a Knight color pattern/generator, model $K G-685$, but the owner's manual, parts list, and schematic were missing. The unit needs some replacement parts and repairs. If you have any information on that model, please send it to 1926 Nocturne Drive, Louisville, KY 40272.
- After subscribing to RadioElectronics for 25 years, CHARLES BROCKMAN is in need of the schematic for a Teledyne model RA-618 AM/FM receiver. If you have one, or can advise him of a source, please write to him at 2602 Woodlawn. Ennis, TX 75119. - BRUCE KLIMISCH has an RF generator, EICO model number 369. It's in kit form, with no assembly information. He'd like to receive an instruction manual at 808 MacBeth Circle, Lakeville, MN 55044.

Try the Els bulletin board system
 (RE-BBS)
 516-293-2283

The more you use it the mare useful it becomes.

We suppart 300 and 1200 baud operation.

Parameters: 8N1 (8 data bits. no parity, 1 stop bit) or 7 7E1 (7 data bits, even parity, 1 slop bilt.

Add yoursalf to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E wlth the SYSOP.

RE-BBS 516-293-2283

BUY SMART

Here's a sample of just a few great moneysaving deals. Be smart, order today.

 DISK DRTME HAF HEIGHT
日ress31
RFF $\$ 179.00$ ULU MEAGMT Af camperite 160 g under - rems lem erze0ed AFE - \$ $\$ 59.95$

Y H-NESOLUTTON TL MONTT
OPEN FUNME 13 VBC
CIETEN PHOSPNOR

 Nint - \$ $\$ 9.95$
3L르애Nㄹ - ExTERMAL OISN DRIVE CMASSIS

- 0007 Cop hoppy Crm
- On coprocestor ixtik
noot Citondir with tiviry bell 40
AMERICAN
- 84 Kg K Kpooma

DESIGN
COMPONENTS
815 Falrvlow Avo.
Falrview, NS 07022

24 Hour Order Hotline 415-592-8097

Math Coprocessors		
8088 or 8086	Sysiems	
8087	5 MHz	$\$ 89.95$
$8087-2$	8 MHz	$\$ 129.9 \$$
8087.1	10 MHz	$\$ 169.95$
80286 or 80 C 286	$5 y s t e m s$	
$2 C 87.10$	10 MHz	$\$ 249.95$
$2 C 87-12$	12 MHz	$\$ 279.95$
$2 C 87-20$	20 MHz	$\$ 299.95$
80386 Systems		
80387.16	16 MHz	$\$ 349.95$
$80387 \cdot 20$	20 MHz	$\$ 399.95$
$80387-25$	25 MHz	$\$ 499.95$
$80397-33$	33 MHz	$\$ 649.95$

SIP Modules

 41256A9A. 10 100m reakr stins 421000ASA to tans 1 Ungis 5124.8

 $94000 \mathrm{~L}-10 \quad 100 \mathrm{~m} 4 \mathrm{mong}$ \$729.St

SIMM Modules
 41256490-10 tebmernert 339.95 \$21000A88-10 100m 1 Hogat $\$ 10995$ 421000A98.70 The I Mognt \$150 95 $\$ 21000 \mathrm{~A} 96-90$ ans. 1 Hogis \$17 95 421000A98-10 100 me 1 Meg1s $\$ 111.95$
 $940005-10 \quad 106 \mathrm{~B} .4 \mathrm{Meg} 15$ stain

NEC V20 \& V30 Chips UPD70100-5 sume V20 Ghy $\$ 5.25$ UPD70100-

Dynamic RAMs

TMS4 $18.12 \quad 120 \mathrm{me} 16 \mathrm{~cm} \quad \$ 2.75$ TMS4418-15 150m 16 ck 4116-12 120me 180.1 4116-15 130me 16K: 4116-20 200-5 100.1 4164.100 1000 max 31

 4154-200 2003 Gus: 41256-60 60m 25010:1 \$1256-90 soma semx 1 $41256-100$, $41256-120$ 120ne 2540×1 41256-150 1sime 250kx 1 4146480 mone cter 41464.10 1001. 6ex 14 $41454.12 \quad 120 \mathrm{men} .40 \mathrm{Ma}$ $\$ 1468.15 \quad 150 \mathrm{~m} .6414 \quad \$ 395$ 511000p-70 Ton 1 litil \$13.95

PROTOTYPING PRODUCTS
Jameco Solderless Breadbords

A.R.T. EpROM Programmer

- Erases all EPRON's - Erases 1. chup in 15 Min and 8 chips in 21 min. UV iniensliy: 6800 UW/CM ${ }^{2}$
DE4.
.$\$ 69.95$

51-Piece Electronic
 Tool Kit

The MS305 provides the rools needed for building. reptiring and general maintenance of most olectronic equipment. A converient and durable carry-atong combination tock case salely protects and secures this 51 -plece toot hith From the digital mullimeter to the desoldering pump this htt to the pertect llem for technicians and sidetronic enthusiasts.

Tools Included In Kit

- 10 measuring lape - Electnc lape - 6^{-}long tweezers - F brush and scrape\| - 7^{7} firme poivi probe - Tr slotied probe - Rosin cort solder - 30 watr soddenng íron - Desoldering pump - Soldering stand	- Staniess steer scissors - Utility components box - Bpas hex kay wrench - Drgrai Multimeter - Round needie file - Flat noede fie - 6° adusitable wrench - Unility knule with exifa dade - Bent needle nose pliers - Diagonal cutting pliers	- 5.25° needle nose pliers - 6 prece prection scrawdiver sel - Brush - 10 prece screwritiver sel 5 Slotted s 5 Phillips - Flat nose ptiers - Carrying cass: $17.63^{\circ} \mathrm{W} \times 12.5^{\circ} \mathrm{D} \times 3.5^{\circ}$
MS305		119.95

Now Available．．．Jameco＇s NEW Flyer 142 with 48 pages of Computer Peripherals \＆More！

－Autocad 10 template and lour． button cursor－Resolution up to 1016 ines por inch．Aceuracy 025＂－Emukates thee of the word＇s most popilar lormats －EEPROM allows custom con figurtion
JCAD Devorw Tablet \＄199．95 SIytus Twa Bumon Sytus．．．．\＄39．95

－IEM PC／XT／AT／396 Compat－

 ble－Saves in amaxing 60\％of the desk space used by equiv alent standard keyboardsMIRU \qquad

1355 Shoreway Road
Belmoni．CA 94002
Belmoni．CA 94002
24 Hour O，Oer Hothine（415）59\％－8097 FAX $(-i 55) 592.2503$ Dr（ 415 ） $595-266$ Telex 176043 ．Ans．Back：Jameco Bimt Dater Sheets． 50 each end 2.00 Pastog for a FREE BO．Page COtriog 11000 Jambeo Etectronces 60 3 M 13 or rovivere rroommek of

24－Hour Order Hottine（di5）592－8097．The Following Services Are Also Available Through（415）592－8097 From 7AM－5PM P．S．T
24 －Hour Order Hothne（dy 59 ．

Jameco 20MHz 80386 Desktop Computer Kht

Fully IBM Compatiols
Fried Concurrent 386 Oisk Opwating Systom Solmare inctuded
Freat OAPL US Dmoroste Sotware metededt
Frow＇WORDSTAA EASY Word Processmo Solmarae inctededf
1Wo RAM inckuded Eupandabit it 8Mo anboard． 1640 with optionel expension board
 AMI BNS ROMS meluded
Fiptop Case wa00 Wall Pomer Supply
MiniScribe 15° somo AlL Mard Dusk Drive 12M0 Fluppy OSHO Disk Drwe 220 Nemim Si Piabing TOr－Key（Enhancoor）Keyboand
JE3550 20MHz 80386 Compatible Kit

 isem luow

IBM PC／XT／AT Compatible Keyboards	
1700	1－J00：9
	Preatroo
JE2015	3．K．Ky Stardeat Syw larour ．．．．．．．．．．．\＄59．95
FKB4700	109 Keg Entered Lajor wri2 Function keys ．．\＄69．95

Casper Amber \＆ Paper White Monitors

These ilat screen 14＂ montions
 nowre an areptere icroen and are deal tor deatiop probaling and CAO apocations Resolution 770 y 348 The GMi 468 lea． Tures how shacias of gray and a dual mode ootion whet alows you to ute if wath CGA or Monochrome admpter carda

GM1468 Pupur utiv Du＊mode ．．．$\$ 119.95$ GM1489 Amber Monoctrome．．．．．．$\$ 109.95$

EGA \＆Multiscan Monitor Packages

Casper 14＂EGA monitor and EGA card package （720 $\times 350$ max．resolution）
JE1059 EGA Montor \＆EGA Card
$\$ 459.95$
Relisys 14＂Mutuscan monitor and EGA card package $\{800 \times 600$ max．resolution） JE2057 Mtseacan Monstox \＆EGA Card
$\$ 559.95$

MiniScribe Hard Drives \＆CMS Tape Back－Ups								
Pwimo	Cepacity	Seyde	$\begin{array}{\|l\|} \hline \text { averoge } \\ \text { speed } \\ \hline \end{array}$	Formet	Drive Alone	$\begin{array}{\|c\|} \text { Wient }(X T) \\ \text { Controllor } \end{array}$	$\begin{gathered} \text { W. 18-bite }(A T) \\ \text { Comboner } \\ \hline \end{gathered}$	
M8425	200	3．514	6ims	NFM	22uss	－－m	－	
M8425xT	2016	35144	Soms	WFM	\square	\＄260．95	－	25
M8425AT	2010	3．504	timm	4．00		－	\＄39985	
M8423F	20ils	3．5x4	40 ms	－4	sinis 9			
M8438	3040	3．514	50 ms	mil	g74 ${ }^{\text {m }}$	－	\cdots	
H84389 ${ }^{\text {¢ }}$	3016	3．5TH	58 ms	Mal	－	\＄29088		
M8438at	30110	3．57\％	6 mm	R11			\＄30．95	88450XT
M8450	40 HLO	357 Na		Pall	\＄22\％${ }^{\text {S }}$	－	－	
M8450xT	40］	3．574	48 ms	ALL		\＄100．5		
M8850at	waso	3.574	45 ms	RLL		－	\＄128．85	
m3085	Toub	525\％4	20 ms	474	\＄590．95	－	－	
M3085at	Toutio	5．57］	20.3	49\％		－	5698．85	OFA500
DJ10								
OFA500	1 SOML Tape Drve with up to 500Mb capability（includes one TC 150 tape）．．．．．．．$\$ 1049.95$							

Hard \＆Hard／Floppy Disk Controiler Cards				
	mem Hard	rill Hand	мpw Mesplout	mil Hatiopry
Compuner Type	Fert Na．t Mrioes	Part Ho．I Price	Pert Ho．／Protos	Patt Ho．i Prom
	kTCews es		K10wsianm	
	（commenshass		（0tsumation M	100weremily
			1000v＊ロ\％	

MiniScribe Hard Drives \＆CMS Tape Back－Ups

＊QUALITY PARTS＊DISCOUNT PRICES＊FAST SHIPPING ALL ELECTRONICS CORP

THUMBWHEEL SWITCH

1 pole 10 portion

 trainu mooded twicher Eltah Whetock to mak－

araine Iominutes to 11 pe pins $\$ 1 \mathrm{com}$ ． mon mad 10 poles）．Efach section measurey
 can be aded to lorm a sat not twed CATE SWTH－융 $\$ 1.25$ each 10 for $\$ 10.00$
END PLATES－CATE SW－gEC $\$ 1.00$ per man

ILLES PHOTO TRANSHTOR

 TLL－37B PHOTO DIODE
70．18 cover inat
CATe Iuling bleo en
14．\％\％m
SWITCHES
ITT PUSH BUTTON

VT rey rocrantio
Merce．Spsima．
Min oden．RutED 0.1 mp mertion
onpery armit．P．C．moure
 100 tor 45000

SPDT PUSHBUTTON
nupquid itas
Renocs arpa $\frac{18 y 50}{}$ Va

CATE PR－10 苗 85 en－ 10 tor tstion
PUSHBUTTON SWITCH ecmomeent 35－420
 coumor 0．gT emano Orome
basw osf chemer．Truectod

WALL TRANSFORMERS
M1 fua Dicecty 120 Vac CUTET

SERVO MOTOR 3 Wex reve rin nimanion provimose M

Chyosvon 25：500

0.6 HOUR AUTO SHUT－OFF TIMER

M．H．Phodes，Inc． Mark－Tme 90007 Wal－boy limer fits standard 5^{5} deep wall box．Puted 20 ampe ele 125 vec Turn knob to desired tima，inctudes hardways．belge wal

NTCKEL－CAD
 BATTERIES （nteranosajen
 ＝20

and scese t190
 NanCS P00 an fici 200 mat
 ansode posonat WTM SCIOKT TARS WTM SOLORTA

 CATE WC M－C DScx samodin 1．wivily 1700 min CATE WCO Cate mel

XENON TUBE

\longrightarrow

 blat mith moll lop

 AElays

GEED RELS GEED RK Engis
engimosito
6e We 600 omm （19Ps．T．net mity upon mad miry $1^{1} \mathrm{~K} 37 \times \mathrm{x}$ ．
 01.10 H8 VDC Latchenc AELay Houn mex my Manno aver en lach 170 170．

 12 YOLT DE Com OD．T Onvond oris sen 40 amm 노 suge abe
 cかTE 县

CALL OR WRITE FOR OUR EREE 60 PAGE CATALOG OVER 4000 PARTSI

Priciotion －Tity

ORDER TOLL FREE
 1－800－826－5432

MAIL ORDERS TO： ALL ELECTRONICS

P．O．BOX 567
VAN NUYS，CA 91408

INSTRUMENT
ENCLOSURES

RECHARGEABLE BATTERY PACK（USED）

 connucted manes o maxis a 4.8 voll puat Bontion aro la 2×2 contiontimon corvecter eracted The fore bationes can be reperated ins
 cabrian beames of neoldere mo oner conlowrations．

SPECUL SALE PRICE NOW
$\$ 3.00$ per peck－ 10 packs lor $\$ 25.00$ CATE NCB－41AAU

is Absonto

CATI GAEs \＄150 pryment
200 ASSORTED CLD
 50 assontid
Drsc capactions $? ~$
 1）VALUE OP centernal rics Max antion
\qquad $\rightarrow-\ln$ intogrand enct nound terem of vercal moureng mam

 I cataubc mapeen totor fro．00

LOOK WHAT $\$ 2.00$ WILL BUY

FAX：（818）781－2653
MIPIMUM ORDER $\$ 10.00$ OUANTITIES LIMITED
CALJF．ADD SALES TAX USA：\＄3．50 SHIPPING FOREIGN ORDERS INCLUDE SUFFICIENT SHIPPING．NO C．O．D

DEVELOPRRS' JOR culve to the dovetoper Mas 10 a progermming praducts proforppong ant catilog for the complete the

MODULAR PROGRAMMING SYSTEM
MODULES USE A COMMON HOST ADAPYOK CADDI SLOT PROGRAMS EPRONS, PROMS, PALS, MORE

HOSY ADAPIOR CARD

- UNWEML INTEREACE FOA N

PPOCCHMNANG MOOLESI
-SELEEEMALE ADORESSES PREVENTS CORFICTS

- MOLDED CABLE

MOO-MAC
${ }^{*} 29.95$

UNIVERSAL MODULE
-499.95

- PROGAWH EPROUS EEPROUS. PALS APPOUN PAOWS.
 AAPAY LOGICIFAOYLATICE, NS SGS. TESTS TIL CMOS OYFWIC E STATC. RUUS - LOAD DISK. SAVE OISK. EDH.
 NOD.MUP
MOD-MPL-SOFT CUR SOF TWARE
599.95

EPROM MOOULE
${ }^{1} 119.95$

- PROGRUWS 24-38 PNEPPOUS. CWOS EPMOMS E EEPACNS FPOM 1 ON TO $102 \angle K$. HEX TO OQ COHVERER-AUTO.
 PILSE PHOCAANIWG ALGOPITRETS
MOD-MEP
OTHER MOOULES: PAL PRCGRUMER OGTTAL TESTEA. BU POUA PROGRAMER MCHOMOCESSO PACGFUMNER

EPROM PROGRAMMER
${ }^{2} 129.95$
 - SUPPOAHS YARIOUS PFHOGRAMMEHG FOPMATS E VOLTAGES - Sent on conewe

CONTENTS OF
SEVERAL EPROMS OF

- AERO WHPE. COD BNEMECK \& VERN - SOFTWARE FOR MEX AND WTEL HEX FOPMATS
MOD-EPROM

 PAFTAL LISTHES ONY Y - MNV OTHERS AYALGELET

EPROM ERASERS

- SNART POCKET SLTE
- ALL SLIEES UPTO AATATME
- ERASES MOST EPROMS INH MOWUTES

OATARASE II
PE. $140 T$ SPECTRONICS O CH

PROTOTYPE CARDS

PHAEPOXV GLASSLAMMATE WTH COCO MATED EDGECANO FMCAEKS MOD SKK SCREFHEO LEANNS

FOW

JDA.PR1
Jon.pre WTH WY ANO GGOUNO PLANE 27.ES PARTS KIT FOR JOA PRQ ABOVE EES fow at

EXIENOTE CARDS

BUILD YOUR OWN 286 SYSTEM FOR UNDER \$650

ITS A GAEAT WAY TO LEARN AND A GREAT WAY TO SAVEJ MFRE S JUST ONE OF OUR MOST POPULAR CONFIGURATIONS:

 Casesin won top case wisow ps $\$ 14995$ FOO-360 300 B Bre PLOMNV DSM DANE 569.95 JDF-WONO MOHOCNOWE MOMTOR GGREN S 59.95 GTC-5050 STMHDARC ALKEY KE YBONAD $\$ 59.95$ TOTAL SYSTEM ION NSTALEDI $\$ 649.65$

OPTIONAL COMPONENTS

MOTMERAOARDS

 Liftiotoof

UPRIGAT CABE 249.95

OF wotermowros ano wicludes A
250 WATT POWER SUPPLY

- MOUNTS FOR 3 FLDPPY AND

4 MARO DANES
TUABCO E MESET SWITCH
-LEO SPEEO
CASE-100

CASE.FLIP FLIP TOP CASE FOA MON MBS .-. $\$ 39.95$

POWER SUPPLIES

PG- 150 150 WATH SUPPY FOA mons $\quad \$ 59.95$ PS-200X 200 WATT SUPPLYFOM toees $\quad \$ 09.95$ PS-200 \% WO WATT SUPPLYFOM 28000
KEYBOAROS
BTC. 5339 I 101 KEY EMHANCEO KE MOMRO S69.95

DRIVE CONTROLLERS
MCT-FDC-HDA 4.FLOPMY OUSX COWTHOLEA 359.95 MCT-HDC MARDOSX COWTHOUEA S79

MEMORV/MULTIFUNCTION CARDS
MCT-RAM 57EK RNU CAAD IOK.
519.95

MCT to MuTIVOCARD - $\$ 59.95$

1.44WB FLOPPY DRIVE *99.95

- LITRA HGH DENSITY

RE NOWRITE TTOK DISKS TOO
GOCX OR BEIGE
FDO.1 4AX BuACK FDD. 1.44 A BECE
FDO-12 B1世 OSND 1 2MB FLOPDY, $\$ 95.95$
SEAGATE HARO DRIVES
24.4 MB KIT ${ }^{2} 249$
32.1 MB KIT ${ }^{1} 279$

SWS AVO. accessony krt mcludes

CAII FOR PACES ON OTMER SEAGATE ORVES

VGA COMPATHALE PACKAOE ${ }^{*} 499.95$
T20 $\times 540$ max at Solution 640×480 Wi in colons. $520 \mathrm{X} \times 40$ AESOUUTION H2S5 colon's - Bem SMEE MCNHTOA
-vea EOA COA MO WGA COMpATHE
VOA-PKC (NCCUDES NOA CMO MO MONITOA) - I
JDA-RGB 14. RCB MONTOM $\$ 239.95$ JDA-AMBEA IT TRL MONOCNOME AMBEA $\$ 6995$
16-EIT VGA DISPLAY ADAPTOW 199.95
$.640 \times 400$ RESCVUTION
 6S LEVELS OF GAEY SCAM -ct.VGA-16
HCT-EAA ENENHCO GRABmCS AOAPTOA - $\$ 149.95$ HCT-WGMIO WONOGRUPHCS METIVO \$11995

2400 BAUO MODEM 89.95

- 2400H200j00 BMO hares COMpatiele - CONFIGURE AS CON12.3OR 4 - BUMT TH SPEAMER P PROCOMW COMMNNCATONS SOFTWARE MCT-241
MCT-121 1200 BAUD WTERAN MOOEM

	DYNAMIC RAMS			
PAMT	sur	seleo	nus	muce
$414.11{ }^{\text {a }}$	wajert	150]	4	24.
41258, 180	2324441	1500	18	29
41350.720	2retatil	12 cma	18	203
11230100	2estus 1	10005	${ }^{10}$	21
1123800	202tant	Pome	${ }_{818}^{18}$	427
$110-40$	parasiont	5004	1	1214

$\$ 59.85$

35MHZ DUAL RACE OSCHIOSCOPE $\$ 49995$

Moll teno wath VARIABLE MOLDOFF 4XIOX PFCDEES - FLIL I VEAR W HODEL-2000 ROWMI VE RSION $\$ 369.95$

fors ve sawa
LOGITECH HLPEZ
BU\$ MOUSE
. 30 DP1 BUS MOUSE

- PEOUIEES HO PAD OR POWER SUPPIV
- HTERFACE CMRD NCLUDED - REGUNES MO SERLA POAT - WOPIKS WITH WOST SOFTWARE FACFAGES
- IACLUDES DAMER. TEXT EDTOM DO UP UENUS
-COMPETE DOCUNE WTATION
 brstem niquast
M NEW HLTE 70
LAAM now

CUSTOMER SERYICE TOLL-FREE 800-538-5001 * TECHNICAL SUPPORT TOLL-FREE 800-538-5002

JOA FICRODEVICES. 2233 BRANHAM LAME SAN JOSE \$512\% LOCAL (408) 559-1200 FAX (408) 559.0250 TELEX 171-110 ALSO DRDER VIA DUR BBS (408) 559-0253

ASSEMBLE YOUR OWN
COMPUTER FOR LE\$\$

20 MHz 80388 Compatible Kt $\$ 1399$
All Componertas Fuly Toued Bulore Ship
One Yeer werenty on All Pats

MSA S MC add 3% Amax add 4\%
Pice \& Cuarlity mubted to change whoul prior noticu 18\% R-stocking Fee on All Non-Oelective hame
JINCO COMPUTERS INC. 5122 WALNUT GROVE AVE.
SAN GABRIEL, CA 91776
Tel: (818) 309-1108
Fax: (818) 309-1107
CIRCLE 180 ON FREE INFORMATION CAAD

CIRCLE 53 ON FREE INFORMATION CARD

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the Index below.

CIRCLE 191 ON FREE INFORMATION CARD
OPTOELECTRONICS
5821 NE 54 th Avenue - Ft Lauderdale. PL. 33334

Toll Free Order Line: 1-800-327-5912

FL(305)771-2050 • FAX(305)771-2052
Vian, MC. COD.Cash. M.O.necepted Ptroonal
WM Check allow 3 weeks. 57 Shipping. Handling. (Marmum 810)U.S. \& Cnrada 15% outside continemal U.S.A

Model	UTCss000	290061	2210	1300H/A	2400H	CCA	Ces
Function	Frem. Period Ratiod interval. Avg. Preacale	Frequency	Frequency	Frequency	Frequency	Frequency	R8 Indicmer
Range	10Hz. 2.4GH:	$\begin{aligned} & 10 \mathrm{NHz} \mathrm{~Hz} \\ & 24 \mathrm{GF} / \mathrm{z} \end{aligned}$	10118. 2.2 GHz	1MH5. 1.30312	$\begin{aligned} & 10 \mathrm{MHz-} \\ & 2.4 \mathrm{GHz} \end{aligned}$	10MHz550MHz	10s: 1.867\%
Display	10 Dhat LCD w/Function Annuscialora	10 Dhent LCD	$\begin{aligned} & 8 \text { DikN } \\ & 2500 \end{aligned}$	$\begin{aligned} & \text { sDigit } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { A Digit } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & 8 \text { Digit } \\ & L: \$ \mathrm{D} \end{aligned}$	*
RF: Signul Strenkth Indicentor	I6 Semment Adjurlable Bargzaph	16 Segment Adjustable Rargraph	*	-	-	LED with Adjustable Threshold	10 segment Adjuatable Bareraph
Price	8375.	\$325.	5218.	\$169.	\$1898.	\$299.	599.
\$NO. - ICD Modrls. Nieada \& AC ehargeriadapter uncluded. 99v Alkuline - CCB.) Carry Cane, Antenman and Probee extra Onc year partin \& labor warranty on all producta.							

Cot the drop on pertommance wish the New STVivor DMM

[^0]: A）a sarvite to rosders．RADNO．ELECTPONICS puthishes available plans or information relating to mewtivorthy products
 matierials and workmenship used by mediers．RADIO．ELECTRONICS diecleims any maponetbility for the zafe and prope

 Since some of the equipment and circaitry deacribed in PADIO－ELECTRONICS mary relate to or be coversd by US patents
 oquipment of circuitry．and euggests that aryone internated in auch propecti conaulte patent ationey
 RADHO－ELECTRONICS，ASSN $0033-7862$ Juns 1990 Published monthly by Gernabeck Publications，Inc．500－日 Bi－Courrty Boultrard．Formingdule，NY 11735 Second－Clians Ponlage paid at Farmingdale，NY and addibonal mating offices Sicond．Class

 POSTMEASTEM，Plsase send addreee changen to RADIO－ELECTRONICS．Subacription DepM．Bca 55：1点，Bouldw．CO 00321－5115．

 A afamped self－addratsed anvelope muel accompany all bulamitted manusicnpts andfor artwork or photographaill thair return it deeired should they be rejectad We dethaim thy retponsibitity hor the hoss or damege of manuscripta end／or artwork or photographa while in our poestssion or otherwise

[^1]: Shlon is a registered Irsdemark of DuPont

[^2]: Over 1000 Items in stock! Birding Posts, Booke, Breadboards, Buzzers, Capacitors, Chokes Clips, Conx, Connectors, Fuses. Hardware, ICs, Jacks, Knobs, Lsmps. Multitestert. PC Boards Plugs, Recliflere, Resistors, Switches. Tools. Transformers, Trsmelore, Wire, Zenere, Morel

[^3]:

